首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The pap1-5 mutation in poly(A) polymerase causes rapid depletion of mRNAs at restrictive temperatures. Residual mRNAs are polyadenylated, indicating that Pap1-5p retains at least partial activity. In pap1-5 strains lacking Rrp6p, a nucleus-specific component of the exosome complex of 3'-5' exonucleases, accumulation of poly(A)+ mRNA was largely restored and growth was improved. The catalytically inactive mutant Rrp6-1p did not increase growth of the pap1-5 strain and conferred much less mRNA stabilization than rrp6delta. This may indicate that the major function of Rrp6p is in RNA surveillance. Inactivation of core exosome components, Rrp41p and Mtr3p, or the nuclear RNA helicase Mtr4p gave different phenotypes, with accumulation of deadenylated and 3'-truncated mRNAs. We speculate that slowed mRNA polyadenylation in the pap1-5 strain is detected by a surveillance activity of Rrp6p, triggering rapid deadenylation and exosome-mediated degradation. In wild-type strains, assembly of the cleavage and polyadenylation complex might be suboptimal at cryptic polyadenylation sites, causing slowed polyadenylation.  相似文献   

2.
3.
4.
5.
6.
Eukaryotic 3'-->5' exonucleolytic activities are essential for a wide variety of reactions of RNA maturation and metabolism, including processing of rRNA, small nuclear RNA, and small nucleolar RNA, and mRNA decay. Two related but distinct forms of a complex containing 10 3'-->5' exonucleases, the exosome, are found in yeast nucleus and cytoplasm, respectively, and related complexes exist in human cells. Here we report on the characterization of the AtRrp41p, an Arabidopsis thaliana homolog of the Saccharomyces cerevisiae exosome subunit Rrp41p (Ski6p). Purified recombinant AtRrp41p displays a processive phosphorolytic exonuclease activity and requires a single-stranded poly(A) tail on a substrate RNA as a "loading pad." The expression of the Arabidopsis RRP41 cDNA in yeast rescues the 5.8 S rRNA processing and 3'-->5' mRNA degradation defects of the yeast ski6-100 mutant. However, neither of these defects can explain the conditional lethal phenotype of the ski6-100 strain. Importantly, AtRrp41p shares additional function(s) with the yeast Rrp41p which are essential for cell viability because it also rescues the rrp41 (ski6) null mutant. AtRrp41p is found predominantly in a high molecular mass complex in Arabidopsis and in yeast cells, and it interacts in vitro with the yeast Rrp44p and Rrp4p exosome subunits, suggesting that it can participate in evolutionarily conserved interactions that could be essential for the integrity of the exosome complex.  相似文献   

7.
Eukaryotic mRNAs containing premature termination codons are subjected to accelerated turnover, known as nonsense-mediated decay (NMD). Recognition of translation termination events as premature requires a surveillance complex, which includes the RNA helicase Upf1p. In Saccharomyces cerevisiae, NMD provokes rapid decapping followed by 5'-->3' exonucleolytic decay. Here we report an alternative, decapping-independent NMD pathway involving deadenylation and subsequent 3'-->5' exonucleolytic decay. Accelerated turnover via this pathway required Upf1p and was blocked by the translation inhibitor cycloheximide. Degradation of the deadenylated mRNA required the Rrp4p and Ski7p components of the cytoplasmic exosome complex, as well as the putative RNA helicase Ski2p. We conclude that recognition of NMD substrates by the Upf surveillance complex can target mRNAs to rapid deadenylation and exosome-mediated degradation.  相似文献   

8.
9.
Inactivation of poly(A) polymerase (encoded by PAP1) in Saccharomyces cerevisiae cells carrying the temperature-sensitive, lethal pap1-1 mutation results in reduced levels of poly(A)(+) mRNAs. Genetic selection for suppressors of pap1-1 yielded two recessive, cold-sensitive alleles of the gene RRP6. These suppressors, rrp6-1 and rrp6-2, as well as a deletion of RRP6, allow growth of pap1-1 strains at high temperature and partially restore the levels of poly(A)(+) mRNA in a manner distinct from the cytoplasmic mRNA turnover pathway and without slowing a rate-limiting step in mRNA decay. Subcellular localization of an Rrp6p-green fluorescent protein fusion shows that the enzyme residues in the nucleus. Phylogenetic analysis and the nature of the rrp6-1 mutation suggest the existence of a highly conserved 3'-5' exonuclease core domain within Rrp6p. As predicted, recombinant Rrp6p catalyzes the hydrolysis of a synthetic radiolabeled RNA in a manner consistent with a 3'-5' exonucleolytic mechanism. Genetic and biochemical experiments indicate that Rrp6p interacts with poly(A) polymerase and with Npl3p, a poly(A)(+) mRNA binding protein implicated in pre-mRNA processing and mRNA nuclear export. These findings suggest that Rrp6p may interact with the mRNA polyadenylation system and thereby play a role in a nuclear pathway for the degradation of aberrantly processed precursor mRNAs.  相似文献   

10.
11.
12.
Related exosome complexes of 3'-->5' exonucleases are present in the nucleus and the cytoplasm. Purification of exosome complexes from whole-cell lysates identified a Mg(2+)-labile factor present in substoichiometric amounts. This protein was identified as the nuclear protein Yhr081p, the homologue of human C1D, which we have designated Rrp47p (for rRNA processing). Immunoprecipitation of epitope-tagged Rrp47p confirmed its interaction with the exosome and revealed its association with Rrp6p, a 3'-->5' exonuclease specific to the nuclear exosome fraction. Northern analyses demonstrated that Rrp47p is required for the exosome-dependent processing of rRNA and small nucleolar RNA (snoRNA) precursors. Rrp47p also participates in the 3' processing of U4 and U5 small nuclear RNAs (snRNAs). The defects in the processing of stable RNAs seen in rrp47-Delta strains closely resemble those of strains lacking Rrp6p. In contrast, Rrp47p is not required for the Rrp6p-dependent degradation of 3'-extended nuclear pre-mRNAs or the cytoplasmic 3'-->5' mRNA decay pathway. We propose that Rrp47p functions as a substrate-specific nuclear cofactor for exosome activity in the processing of stable RNAs.  相似文献   

13.
14.
Exoribonucleases function in the processing and degradation of a variety of RNAs in all organisms. These enzymes play a particularly important role in the maturation of rRNAs and in a quality-control pathway that degrades rRNA precursors upon inhibition of ribosome biogenesis. Strains with defects in 3'-5' exoribonucleolytic components of the RNA processing exosome accumulate polyadenylated precursor rRNAs that also arise in strains with ribosome biogenesis defects. These findings suggested that polyadenylation might target pre-rRNAs for degradation by the exosome. Here we report experiments that indicate a role for the 5'-3' exoribonuclease Rat1p and its associated protein Rai1p in the degradation of poly(A)(+) pre-rRNAs. Depletion of Rat1p enhances the amount of poly(A)(+) pre-rRNA that accumulates in strains deleted for the exosome subunit Rrp6p and decreases their 5' heterogeneity. Deletion of RAI1 results in the accumulation of poly(A)(+) pre-rRNAs, and inhibits Rat1p-dependent 5'-end processing and Rrp6p-dependent 3'-end processing of 5.8S rRNA. RAT1 and RAI1 mutations cause synergistic growth defects in the presence of rrp6-Delta, consistent with the interdependence of 5'-end and 3'-end processing pathways. These findings suggest that Rai1p may coordinate the 5'-end and 3'-end processing and degradation activities of Rat1p and the nuclear exosome.  相似文献   

15.
16.
HeLa cytoplasmic extracts contain both 3'-5' and 5'-3' exonuclease activities that may play important roles in mRNA decay. Using an in vitro RNA deadenylation/decay assay, mRNA decay intermediates were trapped using phosphothioate-modified RNAs. These data indicate that 3'-5' exonucleolytic decay is the major pathway of RNA degradation following deadenylation in HeLa cytoplasmic extracts. Immunodepletion using antibodies specific for the exosomal protein PM-Scl75 demonstrated that the human exosome complex is required for efficient 3'-5' exonucleolytic decay. Furthermore, 3'-5' exonucleolytic decay was stimulated dramatically by AU-rich instability elements (AREs), implicating a role for the exosome in the regulation of mRNA turnover. Finally, PM-Scl75 protein was found to interact specifically with AREs. These data suggest that the interaction between the exosome and AREs plays a key role in regulating the efficiency of ARE-containing mRNA turnover.  相似文献   

17.
18.
19.
The 3'-5' riboexonuclease Rrp6p, a nuclear component of the exosome, functions with other exosome components to produce the mature 3' ends of 5.8S rRNA, sno- and snRNAs, and to destroy improperly processed precursor (pre)-rRNAs and pre-mRNAs. Rrp6p is a member of the RNase D family of riboexonucleases and displays a high degree of homology with the active site of the deoxyriboexonuclease domain of Escherichia coli DNA polymerase I, the crystal structure of which indicates a two-metal ion mechanism for phosphodiester bond hydrolysis. Mutation of each of the conserved residues predicted to coordinate metal ions in the active site of Rrp6p abolished activity of the enzyme in vitro and in vivo. Complete loss of Rrp6p activity caused by the Y361F and Y361A mutations supports the critical role proposed for the phenolic hydroxyl of Tyr361 in the reaction mechanism. Rrp6p also contains an helicase RNase D C-terminal (HRDC) domain of unknown function that is similar to domains in the Werner's and Bloom's Syndrome proteins. A point mutation in this domain results in Rrp6p that localizes to the nucleus, but fails to efficiently process the 3' ends of 5.8S pre-rRNA and some pre-snoRNAs. In contrast, this mutant retains the ability to degrade rRNA processing intermediates and 3'-extended, poly(A)+ snoRNAs. These findings indicate the potential for independent control of the processing and degradation functions of Rrp6p.  相似文献   

20.
Functions of the exosome in rRNA, snoRNA and snRNA synthesis.   总被引:28,自引:0,他引:28       下载免费PDF全文
The yeast nuclear exosome contains multiple 3'-->5' exoribonucleases, raising the question of why so many activities are present in the complex. All components are required during the 3' processing of the 5.8S rRNA, together with the putative RNA helicase Dob1p/Mtr4p. During this processing three distinct steps can be resolved, and hand-over between different exonucleases appears to occur at least twice. 3' processing of snoRNAs (small nucleolar RNAs) that are excised from polycistronic precursors or from mRNA introns is also a multi-step process that involves the exosome, with final trimming specifically dependent on the Rrp6p component. The spliceosomal U4 snRNA (small nuclear RNA) is synthesized from a 3' extended precursor that is cleaved by Rnt1p at sites 135 and 169 nt downstream of the mature 3' end. This cleavage is followed by 3'-->5' processing of the pre-snRNA involving the exosome complex and Dob1p. The exosome, together with Rnt1p, also participates in the 3' processing of the U1 and U5 snRNAs. We conclude that the exosome is involved in the processing of many RNA substrates and that different components can have distinct functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号