首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】利用海水养殖场有机废弃物厌氧发酵产氢,可在减少有机污染物的同时获取氢气。【方法】以海水养殖场有机废弃物为底物,比较嗜热酶(S-TE)、酸、碱、灭菌、微波不同预处理方法对厌氧发酵产氢效果的影响,并对发酵过程中底物性质变化[SCOD、可溶性蛋白质、可溶性糖、pH、VFAs(挥发性脂肪酸)和乙醇]进行探讨。【结果】灭菌预处理产氢效果最好,产氢率为22.0 mL/g VSS,酸处理的效果最差,产氢率为7.6 mL/g VSS。可溶性糖大量消耗之后,氢气不再产生。接种S-TE预处理污泥的底物能更多地释放营养物质,并在整个发酵过程中保持较为稳定的pH值。发酵过程中产生的VFAs主要成分是乙酸,在发酵后期出现乙醇。【结论】灭菌预处理是海水养殖场有机废弃物厌氧发酵产氢的最佳预处理方法,可溶性糖为这一过程主要的营养来源。  相似文献   

2.

Background

Biological hydrogen production from lignocellulosic biomass shows great potential as a promising alternative to conventional hydrogen production methods, such as electrolysis of water and coal gasification. Currently, most researches on biohydrogen production from lignocellulose concentrate on consolidated bioprocessing, which has the advantages of simpler operation and lower cost over processes featuring dedicated cellulase production. However, the recalcitrance of the lignin structure induces a low cellulase activity, making the carbohydrates in the hetero-matrix more unapproachable. Pretreatment of lignocellulosic biomass is consequently an extremely important step in the commercialization of biohydrogen, and for massive realization of lignocellulosic biomass as alternative fuel feedstock. Thus, development of a pretreatment method which is cost efficient, environmentally benign, and highly efficient for enhanced consolidated bioprocessing of lignocellulosic biomass to hydrogen is essential.

Results

In this research, fungal pretreatment was adopted for enhanced hydrogen production by consolidated bioprocessing performance. To confirm the fungal pretreatment efficiency, two typical thermochemical pretreatments were also compared side by side. Results showed that the fungal pretreatment was superior to the other pretreatments in terms of high lignin reduction of up to 35.3% with least holocellulose loss (the value was only 9.5%). Microscopic structure observation combined with Fourier transform infrared spectroscopy (FTIR) analysis further demonstrated that the lignin and crystallinity of lignocellulose were decreased with better holocellulose reservation. Upon fungal pretreatment, the hydrogen yield and hydrogen production rate were 6.8 mmol H2 g-1 pretreated substrate and 0.89 mmol L-1 h-1, respectively, which were 2.9 and 4 times higher than the values obtained for the untreated sample.

Conclusions

Results revealed that although all pretreatments could contribute to the enhancement of hydrogen production from cornstalk, fungal pretreatment proved to be the optimal method. It is apparent that besides high hydrogen production efficiency, fungal pretreatment also offered several advantages over other pretreatments such as being environmentally benign and energy efficient. This pretreatment method thus has great potential for application in consolidated bioprocessing performance of hydrogen production.
  相似文献   

3.
采用热(80℃,15 min)预处理的城市生活垃圾厌氧消化污泥为接种物,考察了不同预处理方法对泔脚中温(36℃)批式发酵产氢的影响。Gompertz模型拟合结果表明:微波850 W,4 min与pH9.0下预处理泔脚的发酵产氢延迟时间λ、最大比产氢率、产氢率、生物气中氢气的最高体积分数分别为:3.47 h,9.43 mL/(g.h),186.23 mL/g及46.0%时,具有更大的产氢优越性。泔脚的发酵产氢过程也是一个酸化过程,发酵产氢结束后,4个预处理方案的发酵产氢余物的pH在4.40~5.00之间,pH均有较大幅度的下降。  相似文献   

4.
The yeast, Saccharomyces cerevisiae, contains two citrate synthase isoenzymes, mitochondrial (CS1) and cytosolic (CS2). In this study, we have examined the metabolic consequences of the absence of CS1, CS2, and both isoenzymes in the respective mutant strains CS1-, CS2-, and CS1-CS2-. No significant differences were found in the growth rates of the parental, CS1-, or CS2- strains when grown in the single carbon sources galactose, glycerol, lactate, pyruvate, or glutamate. However, in nonfermentable carbon sources, the lag period in growth of CS1- was approximately 4 times that of the parental strain and the CS2- mutant. This difference was found even in glutamate. The CS1- mutant failed to grow on acetate in either complete or minimal liquid medium. Total cellular citrate concentration in the CS1- compared to the parental strain was higher when the cells were grown in lactate or pyruvate. On these same substrates, the malate concentration was 2-fold higher in the CS1-mutant when compared to the parental or CS2- strains. The production of 14CO2 by CS1- from [1-14C]acetate was 36% and that from [2-14C]acetate was 9.2% of the amount from the parental or CS2- strains. The 14CO2 production from [1-14C]glutamate was 28% and 20% in CS1- and CS1-CS2-, respectively, compared to the parental strain. Since these results are not easily explained solely by the absence of mitochondrial citrate synthase enzyme, we also determined the activity of some other enzymes of the citric acid cycle and electron transport chain. We found decreased activity of pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and aconitase, while the rest of the citric acid cycle enzymes and oxidative enzymes did not change significantly. The same changes in enzyme activities were found in two different yeast strains carrying the same citrate synthase mutations.  相似文献   

5.
玉米芯发酵法生物制氢   总被引:3,自引:0,他引:3  
在批式培养试验中, 以牛粪堆肥为天然产氢菌源, 玉米芯为底物, 通过厌氧发酵生产氢气。系统考察了底物预处理条件、初始pH值和底物浓度对玉米芯产氢能力的影响。在初始pH 8.0, 1.0%盐酸预处理底物30 min, 底物浓度10 g/L的最佳产氢条件下, 玉米芯最大产氢能力〔每克TVS(总挥发性固体物)产氢量〕和最大产氢速率(每克TVS每小时产氢量)分别为107.9 mL /g、4.20 mL/g·h-1。玉米芯经酸预处理后半纤维素含量由42.2%下降至3.0%, 而酸预处理的玉米芯产氢前后纤维素、半纤维素和木质素含量只有少量变化。产氢菌主要用酸预处理产生的可溶性糖产氢, 故底物的酸预处理对玉米芯的发酵产氢非常重要。用傅里叶变换红外光谱(FTIR)分析显示酸预处理和产氢过程中玉米芯的特征峰发生变化, 酸预处理过程降解了底物纤维素的无定形区和半纤维素, 产氢微生物对纤维素的结晶区有破坏作用。  相似文献   

6.
在批式培养试验中, 以牛粪堆肥为天然产氢菌源, 玉米芯为底物, 通过厌氧发酵生产氢气。系统考察了底物预处理条件、初始pH值和底物浓度对玉米芯产氢能力的影响。在初始pH 8.0, 1.0%盐酸预处理底物30 min, 底物浓度10 g/L的最佳产氢条件下, 玉米芯最大产氢能力〔每克TVS(总挥发性固体物)产氢量〕和最大产氢速率(每克TVS每小时产氢量)分别为107.9 mL /g、4.20 mL/g·h-1。玉米芯经酸预处理后半纤维素含量由42.2%下降至3.0%, 而酸预处理的玉米芯产氢前后纤维素、半纤维素和木质素含量只有少量变化。产氢菌主要用酸预处理产生的可溶性糖产氢, 故底物的酸预处理对玉米芯的发酵产氢非常重要。用傅里叶变换红外光谱(FTIR)分析显示酸预处理和产氢过程中玉米芯的特征峰发生变化, 酸预处理过程降解了底物纤维素的无定形区和半纤维素, 产氢微生物对纤维素的结晶区有破坏作用。  相似文献   

7.
Pretreatment steps are necessary for the bioconversion of corn stover (CS) to xylitol. In order to optimize the pretreatment parameters, the sulfuric acid concentration, sulfuric acid residence time, and solid slurry concentration were evaluated, based on the glucose and xylose recovered from CS at the relatively low temperature of 120°C. The optimum conditions were found to be pretreatment with 2.5% (w/v) sulfuric acid for 1.5 h, with a solid slurry concentration of 90 g/L. Under these conditions, the hydrolysis rates of glucan and xylan were approximately 26.0 and 82.8%, respectively. High xylitol production (10.9 g/L) and conversion yield (0.97 g/g) were attained from corn stover hydrolysate (CSH) without detoxification and any nutrient addition. Our results were similar for xylitol production in synthetic medium under the same conditions. The non-necessity of both the hydrolysate detoxification step and nutrient addition to the CSH is undoubtedly promising for scale-up application on an industrial scale, because this medium-based manufacturing process is expected to reduce the production cost of xylitol. The present study demonstrates that value-added xylitol could be effectively produced from CS under optimized pretreatment conditions, especially with CSH as the substrate material.  相似文献   

8.
Long-term effects of inoculum pretreatments (heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (37 °C, 55 °C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis, and methanogenesis and homoacetogenesis could only be inhibited by proper control of fermentation pH and temperature. Methanogenic activity could be inhibited at pH lower than 6, both under mesophilic and thermophilic conditions, while homoacetogenic activity could only be inhibited under thermophilic condition at initial pH 5.5. Microbial community analysis showed that pretreatment did not affect the dominant bacteria. The dominant bacteria were Clostridium butyricum related organisms under mesophilic condition (initial pH 7 and 5.5), Thermoanaerobacterium sp. related organisms under thermophilic condition (initial pH 7), and Thermoanaerobacterium thermosaccharolyticum related organisms under thermophilic condition (initial pH 5.5). Results from this study clearly indicated that the long-term effects of inoculum pretreatments on hydrogen production, methanogenesis, homoacetogenesis and dominant bacteria were dependent on fermentation temperature and pH.  相似文献   

9.

Background

Corn cob residue (CCR) is a kind of waste lignocellulosic material with enormous potential for bioethanol production. The moderated sulphite processes were used to enhance the hydrophily of the material by sulfonation and hydrolysis. The composition, FT-IR spectra, and conductometric titrations of the pretreated materials were measured to characterize variations of the CCR in different sulfite pretreated environments. And the objective of this study is to compare the saccharification rate and yield of the samples caused by these variations.

Results

It was found that the lignin in the CCR (43.2%) had reduced to 37.8%, 38.0%, 35.9%, and 35.5% after the sulfite pretreatment in neutral, acidic, alkaline, and ethanol environments, respectively. The sulfite pretreatments enhanced the glucose yield of the CCR. Moreover, the ethanol sulfite sample had the highest glucose yield (81.2%, based on the cellulose in the treated sample) among the saccharification samples, which was over 10% higher than that of the raw material (70.6%). More sulfonic groups and weak acid groups were produced during the sulfite pretreatments. Meanwhile, the ethanol sulfite treated sample had the highest sulfonic group (0.103 mmol/g) and weak acid groups (1.85 mmol/g) in all sulfite treated samples. In FT-IR spectra, the variation of bands at 1168 and 1190 cm-1 confirmed lignin sulfonation during sulfite pretreatment. The disappearance of the band at 1458 cm-1 implied the methoxyl on lignin had been removed during the sulfite pretreatments.

Conclusions

It can be concluded that the lignin in the CCR can be degraded and sulfonated during the sulfite pretreatments. The pretreatments improve the hydrophility of the samples because of the increase in sulfonic group and weak acid groups, which enhances the glucose yield of the material. The ethanol sulfite pretreatment is the best method for lignin removal and with the highest glucose yield.
  相似文献   

10.
Guo L  Li XM  Bo X  Yang Q  Zeng GM  Liao DX  Liu JJ 《Bioresource technology》2008,99(9):3651-3658
Hydrogen production by sterilization, microwave and ultrasonication pretreated waste sludge was investigated in this study. A new strain of Pseudomonas sp. GZ1 (EF551040) was inoculated in pretreated waste sludge to produce hydrogen. The experimental results showed that different pretreated sludge had evident differences in the yield of hydrogen production and lag time. Sterilized sludge had the largest yield of hydrogen production, and the maximum yield was 15.02 ml/gTCOD. The lag time of using sterilized sludge was 15 h, longer than other two pretreated sludge. Using the ultrasonicated sludge, the hydrogen production yield was smallest and lag time was shortest in the three pretreated sludge. Protein and carbohydrate could be released from waste sludge by pretreatment. Protein was the main nutrient used for hydrogen production. The concentration of protein, carbohydrate and SCOD increased after pretreatment and fermentation. The impacts of different pretreatments on hydrogen production were also discussed in detail.  相似文献   

11.
The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet extract (SB) were comparatively evaluated for fermentative hydrogen production. Pretreatments and/or enzymatic hydrolysis led to 27, 37, 56, 74 and 45 g soluble sugars/100 g dry BS, CS, BG, CG and SB, respectively. A rapid test was applied to evaluate the fermentability of the hydrolysates and SB extract. The thermophilic bacterium Caldicellulosiruptor saccharolyticus showed high hydrogen production on hydrolysates of mild-acid pretreated BS, hydrolysates of BG and CG, and SB extract. Mild-acid pretreated CS showed limited fermentability, which was partially due to inhibitory products released in the hydrolysates, implying the need for the employment of a milder pretreatment method. The difference in the fermentability of BS and CS is in strong contrast to the similarity of the composition of these two feedstocks. The importance of performing fermentability tests to determine the suitability of a feedstock for hydrogen production was confirmed.  相似文献   

12.
Biodiesel wastes containing glycerol were utilized by Klebsiella pneumoniae DSM 2026 to produce hydrogen. The optimization of medium components was performed using both Plackett-Burman and uniform design methods. Using the Plackett-Burman design, glycerol, yeast extract, NH(4)Cl, KCl and CaCl2 were found to be the most important components, which were further investigated by uniform design and second-order polynomial stepwise regression analysis. The optimized medium containing 20.4 g.L(-1) glycerol, 5.7 g.L(-1) KCl, 13.8 g.L(-1) NH(4)Cl, 1.5 g.L(-1) CaCl(2) and 3.0 g.L(-1) yeast extract resulted in 5.0-fold increased level of hydrogen (57.6 mL/50 mL medium) production compared to initial level (11.6 mL/50 mL medium) after 24 h of fermentation The optimization of fermentation condition (pH, temperature and inoculum) was also conducted. When the strain grew in the optimized medium under optimal fermentation condition in a 5-L stirred tank bioreactor for batch production, hydrogen yield and production reached 0.53 mol/mol and 117.8 mmol/L, respectively. The maximum hydrogen evolution rate was 17.8 mmol/(L.h). Furthermore, 1,3-propanediol (6.7 g.L(-1)) was also obtained from the liquid medium as a by-product.  相似文献   

13.
The ethanol production capacity from sugars and lignocellulosic biomass hydrolysates (HL) by Thermoanaerobacterium strain AK(17) was studied in batch cultures. The strain converts various carbohydrates to, acetate, ethanol, hydrogen, and carbon dioxide. Ethanol yields on glucose and xylose were 1.5 and 1.1 mol/mol sugars, respectively. Increased initial glucose concentration inhibited glucose degradation and end product formation leveled off at 30 mM concentrations. Ethanol production from 5 g L(-1) of complex biomass HL (grass, hemp, wheat straw, newspaper, and cellulose) (Whatman paper) pretreated with acid (0.50% H(2) SO(4)), base (0.50% NaOH), and without acid/base (control) and the enzymes Celluclast and Novozyme 188 (0.1 mL g(-1) dw; 70 and 25 U g(-1) of Celluclast and Novozyme 188, respectively) was investigated. Highest ethanol yields (43.0 mM) were obtained on cellulose but lowest on hemp leafs (3.6 mM). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The influence of various factors (HL, enzyme, and acid/alkaline concentrations) on end-product formation from 5 g L(-1) of grass and cellulose was further studied to optimize ethanol production. Highest ethanol yields (5.5 and 8.6 mM ethanol g(-1) grass and cellulose, respectively) were obtained at very low HL concentrations (2.5 g L(-1)); with 0.25% acid/alkali (v/v) and 0.1 mL g(-1) enzyme concentrations. Inhibitory effects of furfural and hydroxymethylfurfural during glucose fermentation, revealed a total inhibition in end product formation from glucose at 4 and 6 g L(-1), respectively.  相似文献   

14.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

15.
Data from 2032 Uruguayan Aberdeen Angus cows under extensive management and recording practices were analysed with Bayesian threshold-liability sire models, to assess genetic variability in calving success (CS), defined as a different binary trait for each of the second (CS2), third (CS3) and fourth (CS4) calving opportunities. Sire (herd) variances ranged from 0.08 to 0.11 (0.10 to 0.20) and heritability from 0.27 to 0.35, with large credibility intervals. Correlations between herd effects on CS at different calving opportunities were positive. Genetic correlation between CS2 and CS4 was positive (0.68), whereas those involving adjacent calving opportunities (CS2-CS3 and CS3-CS4) were negative, at -0.39 and -0.54, respectively. The residual correlation CS2-CS3 was negative (-0.32). The extent of uncertainty associated with the posterior estimates of the parameters was further evaluated through simulation, assuming different true values (-0.4, -0.2, +0.2 and +0.4) for the genetic correlations and changes in the degree of belief parameters of the inverse Wishart priors for the sire covariance matrix. Although inferences were not sharp enough, CS appears to be moderately heritable. The quality of data recording should be improved, in order to effect genetic improvement in female fertility.  相似文献   

16.
In this work, a semi-continuous biological system was established to produce hydrogen and generate electricity by coupling the bioreactor to a fuel cell. Heat and acid pretreatments (at 35 and 55 °C) of a seed sludge used as inoculum were performed in order to increase hydrogen producers. Different initial glucose concentrations (IGC) were tested for heat pretreated inoculum at 35 °C to determine the optimum concentration of glucose that supported the highest hydrogen production. Results showed that the heat pretreated inoculums (35 °C) reached the highest hydrogen molar yield of 2.85 mol H2/mol glucose (0.014 L/h), which corresponds to the acetic acid pathway. At the optimum IGC (10 g/L, 35 °C) the hydrogen molar yield was 3.6 mol H2/mol glucose (0.023 L/h). The coupled bioreactor-fuel cell system yielded an output voltage of 1.06 V, power of 0.1 W (25 °C) and a current of 68 mA. The overall results suggest that high hydrogen molar yields can be obtained through the acetic acid pathway and that is feasible to generate electricity using hydrogen from the semi- continuous bioreactor.  相似文献   

17.
The present study investigates the effect of pH and intermediate products formation on biological hydrogen production using Enterobacter cloacae IIT-BT 08. Initial pH was found to have a profound effect on hydrogen production potential, while regulating the pH 6.5 throughout the fermentation was found to increase the cumulative hydrogen production rate and yield significantly. Modified Gompertz equation was used to fit the cumulative hydrogen production curves to obtain the hydrogen production potential P, the hydrogen production rate R and lag phase λ. At regulated pH 6.5, higher H(2) yield (3.1molH(2)mol(-1) glucose), specific hydrogen production potential (798.1mL/g) and specific rate of H(2) production (72.1mLL(-1)h(-1)g(-1)) were obtained. The volatile fatty acid profile showed butyrate, ethanol and acetate as the major end metabolites of fermentation under the operating pH conditions tested; however, their pattern of distribution was pH dependent. At the optimum pH of 6.5, the acetate to butyrate ratio (A/B ratio) was found to be higher than that at any other pH. The study also investigates the effect of sodium ions on biohydrogen production potential. It was also found that sodium ion concentration up to 250mM enhanced the hydrogen production potential; however, any further increase in the metal ion concentration had an inhibitory effect.  相似文献   

18.

Background

The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of acid and alkaline pretreatments.

Results

The pretreatment pH was the most significant factor affecting both the enzymatic glucose and xylose yields after mild thermal pretreatments at maximum 140°C for 10 min. The maximal enzymatic glucose and xylose yields from the solid, pretreated wheat straw fraction were obtained after pretreatments at the most extreme pH values (pH 1 or pH 13) at the maximum pretreatment temperature of 140°C. Surface response models revealed significantly correlating interactions of the pretreatment pH and temperature on the enzymatic liberation of both glucose and xylose from pretreated, solid wheat straw. The influence of temperature was most pronounced with the acidic pretreatments, but the highest enzymatic monosaccharide yields were obtained after alkaline pretreatments. Alkaline pretreatments also solubilized most of the lignin.

Conclusions

Pretreatment pH exerted significant effects and factor interactions on the enzymatic glucose and xylose releases. Quite extreme pH values were necessary with mild thermal pretreatment strategies (T ≤ 140°C, time ≤ 10 min). Alkaline pretreatments generally induced higher enzymatic glucose and xylose release and did so at lower pretreatment temperatures than required with acidic pretreatments.  相似文献   

19.
The optimum conditions for biological hydrogen production from food waste by Clostridium beijerinckii KCTC 1875 were investigated. The optimum initial pH and fermentation temperature were 7.0 and 40°C, respectively. When the pH of fermentation was controlled to 5.5, a maximum amount of hydrogen could be obtained. Under these conditions, about 2,737 mL of hydrogen was produced from 50 g COD/L of food waste for 24 h, and the hydrogen content in the biogas was 38%. Hydrogen production rate and yield were about 108 mL/L·h and 128 mL/g CODdegraded, respectively. High concentrations of acetic (< 5,000 mg/L) or butyric acid (< 3,000 mg/L) significantly inhibited hydrogen production.  相似文献   

20.
This study investigated the effect of enzymatic and combined alkaline-enzymatic pretreatments on chemical composition and methane production from ensiled sorghum forage. Four commercial enzymatic preparations were tested and the two yielding the highest sugars release were added to evaluate any hydrolytic effect on both untreated and alkaline pretreated samples. In the combined alkaline-enzymatic pretreatment trials, the highest sugar release was found with Primafast and BGL preparations (added at a final concentration 0.12 and 0.20 mL/g TS, respectively), with a total monomeric content of 12 and 6.5 g/L. Fibre composition analysis confirmed that the combined alkaline-enzymatic pretreatment led to cellulose (up to 32 %) and hemicelluloses (up to 56 %) solubilisation, compared to the enzymatic pretreatment alone. BMP tests were performed on both untreated and pretreated samples, and time courses of methane production were fitted. Both enzymatic and combined alkaline-enzymatic pretreatment led to a methane production increase (304 and 362 mL CH4/g VS), compared to that of untreated sorghum (265 mL CH4/g VS), as  +15 and  +37 %, respectively. Moreover, higher specific methane production rates, compared to that of untreated sorghum (20.31 mL CH4/g VS/d), were obtained by applying the enzymatic and combined alkaline-enzymatic pretreatment (33.94 and 31.65 mL CH4/g VS/d), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号