首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Our previous studies carried out on the pilocarpine model of seizures showed that highly resolved elemental analysis might be very helpful in the investigation of processes involved in the pathogenesis of epilepsy, such as excitotoxicity or mossy fiber sprouting. In this study, the changes in elemental composition that occurred in the hippocampal formation in the electrical kindling model of seizures were examined to determine the mechanisms responsible for the phenomenon of kindling and spontaneous seizure activity that may occur in this animal model. X-ray fluorescence microscopy was applied for topographic and quantitative analysis of selected elements in tissues taken from rats subjected to repetitive transauricular electroshocks (ES) and controls (N). The detailed comparisons were carried out for sectors 1 and 3 of the Ammon’s horn (CA1 and CA3, respectively), the dentate gyrus (DG) and hilus of DG. The obtained results showed only one statistically significant difference between ES and N groups, namely a higher level of Fe was noticed in CA3 region in the kindled animals. However, further analysis of correlations between the elemental levels and quantitative parameters describing electroshock-induced tonic and clonic seizures showed that the areal densities of some elements (Ca, Cu, Zn) strongly depended on the progress of kindling process. The areal density of Cu in CA1 decreased with the cumulative (totaled over 21 stimulation days) intensity and duration of electroshock-induced tonic seizures while Zn level in the hilus of DG was positively correlated with the duration and intensity of both tonic and clonic seizures.  相似文献   

2.
X-ray fluorescence microscopy was applied for topographic and quantitative elemental analysis within the areas of the rat brain that undergo neurodegenerative changes in consequence of pilocarpine-induced seizures. Significant changes in levels of selected elements were observed in epileptic animals. They included an increased tissue content of Ca in the CA1 and CA3 regions of the hippocampus and in the cerebral cortex. The opposite relation was observed for the Cu level in the dentate gyrus and for Zn in the CA3 region of the hippocampus and in the dentate gyrus.  相似文献   

3.
Cell signaling mediated by P2X7 receptors (P2X7R) has been suggested to be involved in epileptogenesis, via modulation of intracellular calcium levels, excitotoxicity, activation of inflammatory cascades, and cell death, among other mechanisms. These processes have been described to be involved in pilocarpine-induced status epilepticus (SE) and contribute to hyperexcitability, resulting in spontaneous and recurrent seizures. Here, we aimed to investigate the role of P2X7R in epileptogenesis in vivo using RNA interference (RNAi) to inhibit the expression of this receptor. Small interfering RNA (siRNA) targeting P2X7R mRNA was injected into the lateral ventricles (icv) 6 h after SE. Four groups were studied: Saline-Vehicle, Saline-siRNA, Pilo-Vehicle, and Pilo-siRNA. P2X7R was quantified by western blotting and neuronal death assessed by Fluoro-Jade B histochemistry. The hippocampal volume (edema) was determined 48 h following RNAi. Behavioral parameters as latency to the appearance of spontaneous seizures and the number of seizures were determined until 60 days after the SE onset. The Saline-siRNA and Pilo-siRNA groups showed a 43 and 37% reduction, respectively, in P2X7R protein levels compared to respective vehicle groups. Neuroprotection was observed in CA1 and CA3 of the Pilo-siRNA group compared to Pilo-Vehicle. P2X7R silencing in pilocarpine group reversed the increase in the edema detected in the hilus, suprapyramidal dentate gyrus, CA1, and CA3; reduced mortality rate following SE; increased the time to onset of spontaneous seizure; and reduced the number of seizures, when compared to the Pilo-Vehicle group. Therefore, our data highlights the potential of P2X7R as a therapeutic target for the adjunct treatment of epilepsy.  相似文献   

4.
This paper describes the results of the application of X-ray fluorescence microscopy to the qualitative, topographic and quantitative elemental analysis of nervous tissue from rats with neocortical brain injury. The tissue samples were analyzed with a 15 μm beam defined by the size of the polycapillary focus. Raster scanning of the samples generated 2D cartographies, revealing the distributions of elements such as P, S, Cl, K, Ca, Fe, Cu, and Zn. Special emphasis was placed on the analysis of the areas neighboring the lesion site and the hippocampal formation tissue. The results obtained for rats with mechanical brain injuries were compared with those recorded for controls and animals with pilocarpine-induced seizures. There were no significant differences in the elemental compositions of gray and white matter between injured and uninjured brain hemispheres. A higher level of Ca was observed in the gray matter of both of the hemispheres in brains with neocortical injuries. A similar relation was noticed for Fe in the white matter. A comparative study of hippocampal formation tissue showed a statistically significant decrease in the mass per unit area of P in the dentate gyrus (DG) and the hilus (H) of DG for animals with brain lesions in comparison with the control group. Analogous relations were found for Cu in the DG and Zn in sector 3 of Ammon’s horn (CA3) and the DG. It is important to note that identical changes in the same areas were observed for animals with pilocarpine-induced seizures in our previous study.  相似文献   

5.
Vagus nerve stimulation (VNS) is an effective adjunctive treatment for medically refractory epilepsy. In this study, we measured VNS-induced changes in hippocampal neurotransmitter levels and determined their potential involvement in the anticonvulsive action of VNS, to elucidate the mechanism of action responsible for the seizure suppressing effect of VNS in an animal model for limbic seizures. We used in vivo intracerebral microdialysis to measure VNS-induced changes in hippocampal extracellular concentrations of noradrenaline, dopamine, serotonin and GABA in freely moving, male Wistar rats. During the same experiment, the effect of VNS on pilocarpine-induced limbic seizures was assessed using video-EEG monitoring. The involvement of VNS-induced increases in hippocampal noradrenaline in the mechanims of action of VNS was evaluated by blocking hippocampal α(2)-receptors. VNS produced a significant increase in hippocampal noradrenaline concentration (69 ± 16% above baseline levels). VNS also increased the latency between pilocarpine infusion and the onset of epileptiform discharges, and reduced the duration and severity of pilocarpine-induced limbic seizures. A strong positive correlation was found between the noradrenergic and anticonvulsive effects of VNS. Blockade of hippocampal α(2 -receptors reversed the seizure-suppressing effect of VNS. VNS induces increases in extracellular hippocampal noradrenaline, which are at least partly responsible for its seizure-suppressing effect in a model for limbic seizures, and constitute a potential biomarker for the efficacy of VNS in temporal lobe epilepsy.  相似文献   

6.
Status epilepticus (SE) is a severe clinical manifestation of epilepsy associated with intense neuronal loss and inflammation, two key factors involved in the pathophysiology of temporal lobe epilepsy. Bone marrow mononuclear cells (BMMC) attenuated the consequences of pilocarpine-induced SE, including neuronal loss, in addition to frequency and duration of seizures. Here we investigated the effects of BMMC transplanted early after the onset of SE in mice, as well as the involvement of soluble factors produced by BMMC in the effects of the cell therapy. Mice were injected with pilocarpine for SE induction and randomized into three groups: transplanted intravenously with 1 × 107 BMMC isolated from GFP transgenic mice, injected with BMMC lysate, and saline-treated controls. Cell tracking, neuronal counting in hippocampal subfields and cytokine analysis in the serum and brain were performed. BMMC were found in the brain 4 h following transplantation and their numbers progressively decreased until 24 h following transplantation. A reduction in hippocampal neuronal loss after SE was found in mice treated with live BMMC and BMMC lysate when compared to saline-treated, SE-induced mice. Moreover, the expression of inflammatory cytokines IL-1β, TNF-α, IL-6 was decreased after injection of live BMMC and to a lesser extent, of BMMC lysate, when compared to SE-induced controls. In contrast, IL-10 expression was increased. Analysis of markers for microglia activation demonstrated a reduction of the expression of genes related to type 1-activation. BMMC transplantation promotes neuroprotection and mediates anti-inflammatory effects following SE in mice, possibly through the secretion of soluble factors.  相似文献   

7.
Baicalin, a flavonoid compound purified from plant Scutellaria baicalensis Georgi, has been reported to possess a wide variety of pharmacological properties including anti-oxidative, anti-apoptotic and neuroprotective properties. Oxidative stress can dramatically alter neuronal function and has been linked to status epilepticus (SE). However, the neuroprotective effect of baicalin on epilepsy is unclear. In this study we investigated whether Baicalin could exert anticonvulsant and neuroprotective effects in the pilocarpine-induced epileptic model in rats. To this end, we recorded the latency to first limbic seizure and SE and observed the incidence of SE and mortality. The changes of oxidative stress were measured 24 h after pilocarpine-induced SE. Nissl staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and Fluoro-Jade B staining were performed to detect the neuronal loss, apoptosis and degeneration in hippocampus 72 h after pilocarpine-induced seizure. Pretreatment with baicalin significantly delayed the onset of the first limbic seizures and SE, reduced the mortality rate, and attenuated the changes in the levels of lipid peroxidation, nitrite content and reduced glutathione in the hippocampus of pilocarpine-treated rats. Furthermore, we also found that baicalin attenuated the neuronal cell loss, apoptosis, and degeneration caused by pilocarpine-induced seizures in rat hippocampus. Collectively, these results indicated remarkable anticonvulsant and neuroprotective effects of baicalin and should encourage further studies to investigate baicalin as an adjuvant in epilepsy both to prevent seizures and to protect against seizure induced brain injury.  相似文献   

8.
The lithium-pilocarpine model of epilepsy reproduces in rodents several features of human temporal lobe epilepsy, by inducing an acute status epilepticus (SE) followed by a latency period. It has been proposed that the neuronal network reorganization that occurs during latency determines the subsequent appearance of spontaneous recurrent seizures. The aim of this study was to evaluate neuronal and glial responses during the latency period that follows SE. Given the potential role of astrocytes in the post-SE network reorganization, through the secretion of synaptogenic molecules such as thrombospondins, we also studied the effect of treatment with the α2δ1 thrombospondin receptor antagonist gabapentin. Adult male Wistar rats received 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once SE was achieved, seizures were stopped with 20 mg/kg diazepam. Animals then received 400 mg/kg/day gabapentin or saline for either 4 or 14 days. In vitro experiments were performed in dissociated mixed hippocampal cell culture exposed to glutamate, and subsequently treated with gabapentin or vehicle. During the latency period, the hippocampus and pyriform cortex of SE-animals presented a profuse reactive astrogliosis, with increased GFAP and nestin expression. Gliosis intensity was dependent on the Racine stage attained by the animals and peaked 15 days after SE. Microglia was also reactive after SE, and followed the same pattern. Neuronal degeneration was present in SE-animals, and also depended on the Racine stage and the SE duration. Polysialic-acid NCAM (PSA-NCAM) expression was increased in hippocampal CA-1 and dentate gyrus of SE-animals. Gabapentin treatment was able to reduce reactive gliosis, decrease neuronal loss and normalize PSA-NCAM staining in hippocampal CA-1. In vitro, gabapentin treatment partially prevented the dendritic loss and reactive gliosis caused by glutamate excitotoxicity. Our results show that gabapentin treatment during the latency period after SE protects neurons and normalizes PSA-NCAM probably by direct interaction with neurons and glia.  相似文献   

9.
The effect of Cavalheiro's pilocarpine model of epileptogenesis upon conditioned taste aversion (CTA), an important example of nondeclarative memory, was studied in adult Long Evans rats. Deterioration of CTA was studied during the silent period between pilocarpine-induced status epilepticus (SE) and delayed spontaneous recurrent seizures. SE was elicited by i.p. injection of pilocarpine (320 mg/kg ) and interrupted after 2 hours by clonazepame (1 mg/kg i.p.). Peripheral cholinergic symptoms were suppressed by methylscopolamine (1 mg/kg i.p.), administered together with pilocarpine. CTA was formed against the salty taste of isotonic LiCl. In the experiment of CTA acquisition, the CTA was formed and tested during the silent period after SE. In the experiment of CTA retrieval, the CTA was acquired before SE and the retrieval itself was tested during the silent period. Retrieval of CTA acquired before SE was impaired more than the retrieval of CTA formed during the silent period. Our findings indicate that epileptic seizures can disrupt even non-declarative memory but that CTA formed by the damaged brain can use its better preserved parts for memory trace formation. Ketamine (50 mg/kg i.p.) applied 2 min after the onset of pilocarpine-induced status epilepticus protected memory deterioration.  相似文献   

10.
Recent research data have shown that systemic administration of pyruvate and oxaloacetate causes an increased brain-to-blood glutamate efflux. Since increased release of glutamate during epileptic seizures can lead to excitotoxicity and neuronal cell death, we tested the hypothesis that glutamate scavenging mediated by pyruvate and oxaloacetate systemic administration could have a neuroprotective effect in rats subjected to status epilepticus (SE). SE was induced by a single dose of pilocarpine (350mg/kgi.p.). Thirty minutes after SE onset, a single dose of pyruvate (250mg/kgi.p.), oxaloacetate (1.4mg/kgi.p.), or both substances was administrated. Acute neuronal loss in hippocampal regions CA1 and hilus was quantitatively determined five hours after SE onset, using the optical fractionator method for stereological cell counting. Apoptotic cascade in the hippocampus was also investigated seven days after SE using caspase-1 and -3 activity assays. SE-induced neuronal loss in CA1 was completely prevented in rats treated with pyruvate plus oxaloacetate. The SE-induced caspase-1 activation was significantly reduced when rats were treated with oxaloacetate or pyruvate plus oxaloacetate. The treatment with pyruvate and oxaloacetate caused a neuroprotective effect in rats subjected to pilocarpine-induced SE.  相似文献   

11.
Sublethal stress stimuli such as systemic endotoxin treatment can induce tolerance of the brain to subsequent ischemic stress, which results in a decreased infarct size. Based on this evidence, we hypothesized that lipopolysaccharide (LPS)-induced preconditioning could protect hippocampal neurons in epileptic rats. To test this hypothesis, the anticonvulsant effect of a low dose of LPS against seizures elicited by pilocarpine hydrochloride was measured. Using the pilocarpine model of temporal lobe epilepsy and LPS-preconditioning, we also investigated hippocampal pathology in the rat brain. Based on the behavioural observations conducted, it can be assumed that the preconditioning procedure used may decrease seizure excitability in epileptic rats. However, determination of the seizure excitability threshold needs to be elaborated. Qualitative and quantitative analyses of histological brain sections in the LPS-preconditioned rats showed markedly decreased intensity of neurodegenerative changes in the CA1, CA3 and DG hippocampal fields. The tendency was observed in all the periods of the pilocarpine model of epilepsy. We suggest that preconditioning with LPS may have neuroprotective effects in the CA1, CA3 and DG hippocampal sectors; however, it has no influence on the course of the seizures in rats in the pilocarpine model of epilepsy.  相似文献   

12.
Epilepsy prevalence is high in infancy and in the elderly population. Lithium–pilocarpine is widely used to induce experimental animal models of epilepsy, leading to similar neurochemical and morphological alterations to those observed in temporal lobe epilepsy. As astrocytes have been implicated in epileptic disorders, we hypothesized that specific astroglial changes accompany and contribute to epileptogenesis. Herein, we evaluated time-dependent astroglial alterations in the hippocampus of young (27-day-old) rats at 1, 14 and 56 days after Li–pilocarpine-induced status epilepticus (SE), corresponding to different phases in this model of epilepsy. We determined specific markers of astroglial activation: GFAP, S100B, glutamine synthetase (GS), glutathione (GSH) content, aquaporin-4 (AQP-4) and potassium channel Kir 4.1; as well as epileptic behavioral, inflammatory and neurodegenerative changes. Phase-dependent signs of hippocampal astrogliosis were observed, as demonstrated by increments in GFAP, S100B and GS. Astrocyte dysfunction in the hippocampus was characterized, based on the decrease in GSH content, AQP-4 and Kir 4.1 channels. Degenerating neurons were identified by Fluoro-Jade C staining. We found a clear, early (at SE1) and persistent (at SE56) increase in cerebrospinal fluid (CSF) S100B levels. Additionally, serum S100B was found to decrease soon after SE induction, implicating a rapid-onset increase in the CSF/serum S100B ratio. However, serum S100B increased at SE14, possibly reflecting astroglial activation and/or long-term increase in cerebrovascular permeability. Moreover, we suggest that peripheral S100B levels may represent a useful marker for SE in young rats and for follow up during the chronic phases of this model of epilepsy. Together, results reinforce and extend the idea of astroglial involvement in epileptic disorders.  相似文献   

13.
Prolonged seizures in early childhood are associated with an increased risk of development of epilepsy in later life. The mechanism(s) behind this susceptibility to later development of epilepsy is unclear. Increased synaptic activity during development has been shown to permanently alter excitatory neurotransmission and could be one of the mechanisms involved in this increased susceptibility to the development of epilepsy. In the present study we determine the effect of status-epilepticus induced by lithium/pilocarpine at postnatal day 10 (P10 SE) on the expression of glutamate receptor and transporter mRNAs in hippocampal dentate granule cells and protein levels in dentate gyrus of these animals in adulthood. The results revealed a decrease in glutamate receptor 2 (GluR2) mRNA expression and protein levels as well as an increase in protein levels for the excitatory amino acid carrier 1 (EAAC1) in P10 SE rats compared to controls. Expression of glutamate receptor 1 (GluR1) mRNA was decreased in both P10 SE rats and identically handled, lithium-injected littermate controls compared to naive animals, and GluR1 protein levels were significantly lower in lithium-controls than in naive rats, suggesting an effect of either the handling or the lithium on GluR1 expression. These changes in EAA receptors and transporters were accompanied by an increased susceptibility to kainic acid induced seizures in P10 SE rats compared to controls. The current data suggest that early-life status-epilepticus can result in permanent alterations in glutamate receptor and transporter gene expression, which may contribute to a lower seizure threshold.  相似文献   

14.
15.
16.
In the present study we investigated the effect of seizures on rat performance in the Morris water maze task, as well as on choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities in rat hippocampus. Wistar rats were treated with 0.9% saline (i.p., control group), lipoic acid (20 mg/kg, i.p., LA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of LA (20 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of LA (LA plus pilocarpine group). After the treatments all groups were observed for 1 h. The effect of lipoic acid administration was observed on reference and working spatial memory of seized rats. The ChAT and AChE activities were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Its activity was also determined after behavioral task. Results showed that pretreatment with lipoic acid did not alter reference memory when compared to saline-treated animals. In the working memory task, we observed a significant day’s effect with significant differences between control and pilocarpine-induced seizures and pretreated animals with lipoic acid. In LA plus pilocarpine group was observed a significantly increased in ChAT and AChE activities, when compared to pilocarpine group. Results showed that acute administration of lipoic acid alone did not alter hippocampal ChAT and AChE activities. Our findings suggest that seizures caused cognitive dysfunction and a decrease of ChAT and AChE activities that might be related, at least in part, to the neurological problems presented by epileptic patients. Lipoic acid can reverse cognitive dysfunction observed in seized rats as well as increase the ChAT and AChE activities in hippocampus of rats prior to pilocarpine-induced seizures, suggesting that this antioxidant could be used in clinic treatment of epilepsy.  相似文献   

17.
To explore the effects of neuronal Per-Arnt-Sim domain protein 4 (Npas4) on seizures in pilocarpine-induced epileptic rats, Npas4 expression was detected by double-label immunofluorescence, immunohistochemistry, and Western blotting in the brains of pilocarpine-induced epileptic model rats at 6 h, 24 h, 72 h, 7 d, 14 d, 30 d, and 60 d after status epilepticus. Npas4 was localized primarily in the nucleus and in the cytoplasm of neurons. The Npas4 protein levels increased in the acute phase of seizures (between 6 h and 72 h) and decreased in the chronic phases (between 7 d and 60 d) in the rat model. Npas4 expression was knocked down by specific siRNA interference. Then, the animals were treated with pilocarpine, and the effects on seizures were evaluated on the 7th day. The onset latencies of pilocarpine-induced seizures were decreased, while the seizure frequency, duration and attack rate increased in these rats. Our study indicates that Npas4 inhibits seizure attacks in pilocarpine-induced epileptic rats.  相似文献   

18.
The current study investigated the neuroprotective activity of idebenone against pilocarpine-induced seizures and hippocampal injury in rats. Idebenone is a ubiquinone analog with antioxidant, and ATP replenishment effects. It is well tolerated and has low toxicity. Previous studies reported the protective effects of idebenone against neurodegenerative diseases such as Friedreich’s ataxia and Alzheimer’s disease. So far, the efficacy of idebenone in experimental models of seizures has not been tested. To achieve this aim, rats were randomly distributed into six groups. Two groups were treated with either normal saline (0.9 %, i.p., control group) or idebenone (200 mg/kg, i.p., Ideb200 group) for three successive days. Rats of the other four groups (P400, Ideb50 + P400, Ideb100 + P400, and Ideb200 + P400) received either saline or idebenone (50, 100, 200 mg/kg, i.p.) for 3 days, respectively followed by a single dose of pilocarpine (400 mg/kg, i.p.). All rats were observed for 6 h post pilocarpine injection. Latency to the first seizure, and percentages of seizures and survival were recorded. Surviving animals were sacrificed, and the hippocampal tissues were separated and used for the measurement of lipid peroxides, total nitrate/nitrite, glutathione and DNA fragmentation levels, in addition to catalase and Na+, K+-ATPase activities. Results revealed that in a dose-dependent manner, idebenone (100, 200 mg/kg) prolonged the latency to the first seizure, elevated the percentage of survival and diminished the percentage of pilocapine-induced seizures in rats. Significant increases in lipid peroxides, total nitrate/nitrite, DNA fragmentation levels and catalase activity, in addition to a significant reduction in glutathione level and Na+, K+-ATPase activity were observed in pilocarpine group. Pre-administration of idebenone (100, 200 mg/kg, i.p.) to pilocarpine-treated rats, significantly reduced lipid peroxides, total nitrate/nitrite, DNA fragmentation levels, and normalized catalase activity. Moreover, idebenone prevented pilocarpine-induced detrimental effects on brain hippocampal glutathione level, and Na+, K+-ATPase enzyme activity in rats. Data obtained from the current investigation emphasized the critical role of oxidative stress in induction of seizures by pilocarpine and elucidated the prominent neuroprotective and antioxidant activities of idebenone in this model.  相似文献   

19.
This study aims to establish pilocarpine-induced rat model of status epilepticus (SE), observe the activity of calpain I in the rat hippocampus and the subsequent neuronal death, and explore the relationship between calpain I activity and neuronal death in the hippocampus. Fifty-eight adult male Wistar rats were assigned randomly into either control group (n = 8) or epilepsy group (n = 50). SE was induced in the epilepsy group using pilocarpine. Before the injection, the rats were given atropine sulfate to reduce the side effect of pilocarpine. All rats in the seizure group were grouped into either SE or non-SE, depending on whether they developed convulsive seizures. The rats in SE group were treated with chloral hydrate to stop seizures after 60 min. Control animals were treated with the same dose of 0.9 % saline. All rats were monitored for seizures. At 24 h after SE, the rats’ left brain tissues were stained by HE and TUNEL. Neuronal necrosis and apoptosis in the hippocampal CA3 area were observed. Calpain I activity in the right hippocampus was also observed using western blotting. Eighty percent of the rats in the seizure group developed SE, of which 35 % died. No rat died in both the control and non-SE groups. At 24 h after SE, the number of HE-stained neurons decreased (SE group: 55.19 ± 8.23; control group: 102.13 ± 3.73; non-SE group: 101.2 ± 2.86) and the number of TUNEL-positive neurons increased (SE group: 4.91 ± 1.35; non-SE and control group: 0). No obvious changes were observed in the neurons of the control and non-SE group animals. The 76 kDa cleavage of calpain I (the average optical density ratio is 0.096 ± 0.015) emerged in the SE group. Neuronal death has a direct relationship with calpain I activity. There is high success rate and lower death rate for pilocarpine to induce SE. At 24 h after SE, activity of calpain I, neuronal necrosis and apoptosis increased in the hippocampus. Neuronal death has a direct relationship with calpain I activity, which suggests that calpain I plays an important role in neuronal damage during SE.  相似文献   

20.
Reactive oxygen species have been implicated in seizure-induced neurodegeneration, and there is a correlation between free radical level and scavenger enzymatic activity in the epilepsy. It has been suggested that pilocarpine-induced seizures is mediated by an increase in oxidative stress. Current research has found that antioxidant may provide, in a certain degree, neuroprotection against the neurotoxicity of seizures at the cellular level. Alpha-tocopherol has numerous nonenzymatic actions and is a powerful liposoluble antioxidant. The objective of the present study was to evaluate the neuroprotective effects of alpha-tocopherol (TP) in rats, against oxidative stress caused by pilocarpine-induced seizures. 30 min prior to behavioral observation, Wistar rats were treated with, 0.9% saline (i.p., control group), TP (200 mg/kg, i.p., TP group), pilocarpine (400 mg/kg, i.p., P400 group), or the combination of TP (200 mg/kg, i.p.) and pilocarpine (400 mg/kg, i.p.). After the treatments all groups were observed for 6 h. The enzymatic activities, lipid peroxidation and nitrite concentrations were measured using speccitrophotometric methods and these data were assayed. In P400 group mice there was a significant increase in lipid peroxidation and nitrite levels. However, no alteration was observed in superoxide dismutase (SOD) and catalase activities. In the TP and pilocarpine co-administered mice, antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content, as well as increased the SOD and catalase activities in rat hippocampus after seizures. Our findings strongly support the hypothesis that oxidative stress occurs in hippocampus during pilocarpine-induced seizures, indicate that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and imply that strong protective effect could be achieved using alpha-tocopherol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号