首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Primary spontaneous pneumothorax (PSP), a condition in which air enters the pleural space and causes secondary lung collapse, is mostly sporadic but also occurs in families. The precise etiology of PSP remains unknown, although it is associated with emphysemalike changes (bullae) in the lungs of almost all patients. We describe the results of a genetic study of a large Finnish family with a dominantly inherited tendency to PSP. A genomewide scan suggested linkage to chromosome 17p11. Screening of the best candidate gene, FLCN, revealed a 4-bp deletion in the first coding exon, which causes a frameshift that predicts a protein truncation 50 missense amino acids downstream. All carriers of the deletion had bullous lung lesions. Mutations in FLCN are also responsible for Birt-Hogg-Dubé (BHD) syndrome (a dominantly inherited disease characterized by benign skin tumors, PSP, and diverse types of renal cancer) and, rarely, are detected in sporadic renal and colorectal tumors. Unlike other FLCN mutations, the exon 4 deletion seems to be associated with bullous lung changes only with 100% penetrance. These results suggest that changes in FLCN may have an important role in the development of PSP and, more importantly, of emphysema, a chronic pulmonary disease that often leads to formation of bullous lesions and lowered pulmonary function. Additionally, given the strong association of PSP and BHD, the connection between these conditions needs to be investigated further, particularly in patients with familial PSP, who may be at a greater risk of developing renal cancer.  相似文献   

2.
Gastric cancer (GC) is a major cause of global cancer mortality. Genetic variations in DNA repair genes can modulate DNA repair capability and, consequently, have been associated with risk of developing cancer. We have previously identified a T to C point mutation at nucleotide 889 (T889C) in DNA polymerase beta (POLB) gene, a key enzyme involved in base excision repair in primary GCs. The purpose of this study was to evaluate the mutation and expression of POLB in a larger cohort and to identify possible prognostic roles of the POLB alterations in GC. Primary GC specimens and their matched normal adjacent tissues were collected at the time of surgery. DNA, RNA and protein samples were isolated from GC specimens and cell lines. Mutations were detected by PCR-RFLP/DHPLC and sequencing analysis. POLB gene expression was examined by RT-PCR, tissue microarray, Western blotting and immunofluorescence assays. The function of the mutation was evaluated by chemosensitivity, MTT, Transwell matrigel invasion and host cell reactivation assays. The T889C mutation was detected in 18 (10.17%) of 177 GC patients. And the T889C mutation was associated with POLB overexpression, lymph nodes metastases and poor tumor differentiation. In addition, patients with- the mutation had significantly shorter survival time than those without-, following postoperative chemotherapy. Furthermore, cell lines with T889C mutation in POLB gene were more resistant to the treatment of 5-fluorouracil, cisplatin and epirubicin than those with wild type POLB. Forced expression of POLB gene with T889C mutation resulted in enhanced cell proliferation, invasion and resistance to anticancer drugs, along with increased DNA repair capability. These results suggest that POLB gene with T889C mutation in surgically resected primary gastric tissues may be clinically useful for predicting responsiveness to chemotherapy in patients with GC. The POLB gene alteration may serve as a prognostic biomarker for GC.  相似文献   

3.
Multiple osteochondromas (MO), a dominantly inherited genetic disorder, is characterized by the presence of multiple osteochondromas in the long bones. EXT1 and EXT2 are the causative genes in most MO patients. We have characterized 9 MO families and 1 sporadic case involving a total of 25 patients. The coding exons of EXT1 and EXT2 were screened in 10 probands affected with MO. In five of the 10 probands novel pathogenic mutations have been identified: two in EXT1 and three in EXT2. Four probands carried recurrent mutations and one proband had no detectable mutation. Our study extends the mutational spectrum in EXT1 and EXT2 and will facilitate the deep understanding of the pathophysiology of the disease.  相似文献   

4.
The X-linked form of Alport syndrome is associated with mutations in the COL4A5 gene, which is located at Xq22.3 and encodes the α5 chain of type IV collagen. Here we clinically characterized a Chinese family with Alport Syndrome, but no ocular or hearing abnormalities have been observed in any patient in the family. Through Linkage analysis and direct DNA sequencing, a novel complex deletion/insertion mutation c.359_363delGTATTinsATAC in the COL4A5 gene was identified in the family. The mutation was found in all affected family members, but was not present in the unaffected family individuals or the 200 controls. The predicted mutant protein in the family is a truncated protein consisting of only 153 residues. Our report for the first time revealed that the frameshift mutation in the type IV collagen chain α5 causes only renal disease, without extrarenal lesion. Our study broadens genotypic and phenotypic spectrum of COL4A5 mutations associated with Alport syndrome.  相似文献   

5.
6.
Over the past decade cancer-causing genes have been identified for the most common histologic types of renal cancer, specifically clear cell, papillary type 1 and papillary type 2. Genes predisposing to the more rare chromophobe renal carcinoma and renal oncocytoma were unknown until the recent discovery of a novel gene, BHD, on chromosome 17p that was found to be mutated in the germline of affected family members with the Birt-Hogg-Dubé (BHD) syndrome. These patients develop the hallmark BHD skin lesions (fibrofolliculomas), lung cysts and spontaneous pneumothorax. Importantly, BHD patients have an increased risk for developing a variety of renal neoplasia, most commonly chromophobe and oncocytic hybrid tumors. This review will describe the phenotypic manifestations of BHD including the histologic features of BHD-associated renal tumors, the identification of this novel renal cancer-predisposing gene, the BHD mutation spectrum found in BHD patients, and will discuss the potential role of BHD as a tumor suppressor gene.  相似文献   

7.
Peng H  Zhang Y  Long Z  Zhao D  Guo Z  Xue J  Xie Z  Xiong Z  Xu X  Su W  Wang B  Xia K  Hu Z 《Gene》2012,502(2):168-171
Osteogenesis imperfect (OI) is a heritable connective tissue disorder with bone fragility as a cardinal manifestation, accompanied by short stature, dentinogenesis imperfecta, hyperlaxity of ligaments and skin, blue sclerae and hearing loss. Dominant form of OI is caused by mutations in the type I procollagen genes, COL1A1/A2. Here we identified a novel splicing mutation c.3207+1G>A (GenBank ID: JQ236861) in the COL1A1 gene that caused type I OI in a Chinese family. RNA splicing analysis proved that this mutation created a new splicing site at c.3200, and then led to frameshift. This result further enriched the mutation spectrum of type I procollagen genes.  相似文献   

8.
Geleophysic dysplasia (GD) is a rare disorder characterized by severe short stature, short hands and feet, limited joint mobility, skin thickening, characteristic facial features (e.g., a “happy” face), and cardiac valvular disorders that often result in an early death. The genes ADAMTSL2 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif-like 2) and FBN1 (fibrillin 1) were recently identified as causative genes for GD. Here, we describe a 10-year-old Japanese female with GD who was born to non-consanguineous parents. At the age of 11 months, she was referred to our hospital because of very short stature for her age (− 4.4 standard deviations of the age-matched value) and a “happy” face with full cheeks, a shortened nose, hypertelorism, and a long and flat philtrum, characteristic of GD. Her hands and feet were small, her skin was thickened, and her joint mobility was generally limited. She had cardiac valvular disorders and history of recurrent respiratory failure. Mutation analysis revealed no abnormalities in ADAMTSL2. However, analysis of FBN1 revealed a novel heterozygous mutation (c.5161T > T/G) in exon 41, which encodes transforming growth factor-β-binding protein-like domain 5 (TB5). GD is an extremely rare disorder and, to our knowledge, only one case of GD with an FBN1 mutation has been reported in Japan. Similar to the previously reported cases of GD, the mutation in the current patient was located in the TB5 domain, which suggests that abnormalities in this domain of FBN1 are responsible for GD.  相似文献   

9.
Mutations in the FH gene cause the deficiency of the enzyme fumarase (fumarate hydratase, EC 4.2.1.2) which result in autosomal recessive fumaric aciduria in early childhood with failure to thrive, seizures, developmental delay, mental retardation, hypotonia and sometimes with polycythemia, leukopenia, and neutropenia. Many children with fumarate hydratase deficiency do not survive infancy or childhood; those surviving beyond childhood have severe psychomotor retardation. Recently, FH gene was also identified as a “non-classical” tumor suppressor gene and heterozygous mutations were shown to cause multiple cutaneous and uterine leiomyomas as well as hereditary leiomyomatosis and renal cell cancer. A male patient who was referred to investigate the etiology of psychomotor retardation was later diagnosed to have fumaric aciduria due to the combination of a previously known (c.1431_1433dupAAA) and a novel (c.782G>T) mutation. The patient had an unusually mild clinical course without acidotic attacks. Interestingly his father who was heterozygous for the c.1431_1433dupAAA mutation in the FH gene had cutaneous leiomyoma.  相似文献   

10.
Mutations in the glucose-6-phosphatase (G6Pase) gene are responsible for glycogen storage disease type Ia (GSD Ia). By genotype analysis of the affected pedigree, we identified a novel type mutation in a Chinese patient with GSD Ia. Mutation analysis was performed for the coding region of G6Pase gene using DNA sequencing and TaqMan gene expression assay was used to further confirm the novel mutation. The proband was compound heterozygous for c.311A > T/c.648G > T. Our report expands the spectrum of G6Pase gene mutation in China.  相似文献   

11.
RNA editing sites and their site-specific trans-acting recognition factors are thought to have coevolved. Hence, evolutionary loss of an editing site by a genomic mutation is normally followed by the loss of the specific recognition factor for this site, due to the absence of selective pressure for its maintenance. Here, we have tested this scenario for the only tomato-specific plastid RNA editing site. A single C-to-U editing site in the tomato rps12 gene is absent from the tobacco and nightshade plastid genomes, where the presence of a genomic T nucleotide obviates the need for editing of the rps12 mRNA. We have introduced the tomato editing site into the tobacco rps12 gene by plastid transformation and find that, surprisingly, this heterologous site is efficiently edited in the transplastomic plants. This suggests that the trans-acting recognition factor for the rps12 editing site has been maintained, presumably because it serves another function in tobacco plastids. Bioinformatics analyses identified an editing site in the rpoB gene of tobacco and tomato whose sequence context exhibits striking similarity to that of the tomato rps12 editing site. This may suggest that requirement for rpoB editing resulted in maintenance of the rps12 editing activity or, alternatively, the pre-existing rpoB editing activity facilitated the evolution of a novel editing site in rps12.  相似文献   

12.
Butyrylcholinesterase (BChE) is a plasma enzyme that catalyzes the hydrolysis of choline esters, including the muscle-relaxant succinylcholine and mivacurium. Patients who present sustained neuromuscular blockade after using succinylcholine usually carry BChE variants with reduced enzyme activity or an acquired BChE deficiency. We report here the molecular basis of the BCHE gene underlying the slow catabolism of succinylcholine in a patient who underwent endoscopic nasal surgery. We measured the enzyme activity of BChE and extracted genomic DNA in order to study the promoter region and all exons of the BCHE gene of the patient, her parents and siblings. PCR products were sequenced and compared with reference sequences from GenBank. We detected that the patient and one of her brothers have two homozygous mutations: nt1615 GCA > ACA (Ala539Thr), responsible for the K variant, and nt209 GAT > GGT (Asp70Gly), which produces the atypical variant A. Her parents and two of her brothers were found to be heterozygous for the AK allele, and another brother is homozygous for the normal allele. Sequence analysis of exon 1 including 5'UTR showed that the proband and her brother are homozygous for -116GG. The AK/AK genotype is considered the most frequent in hereditary hypocholinesterasemia (44%). This work demonstrates the importance of defining the phenotype and genotype of the BCHE gene in patients who are subjected to neuromuscular block by succinylcholine, because of the risk of prolonged neuromuscular paralysis.  相似文献   

13.
《Autophagy》2013,9(10):1749-1760
Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant condition caused by mutations in the FLCN gene and characterized by benign hair follicle tumors, pneumothorax, and renal cancer. Folliculin (FLCN), the protein product of the FLCN gene, is a poorly characterized tumor suppressor protein, currently linked to multiple cellular pathways. Autophagy maintains cellular homeostasis by removing damaged organelles and macromolecules. Although the autophagy kinase ULK1 drives autophagy, the underlying mechanisms are still being unraveled and few ULK1 substrates have been identified to date. Here, we identify that loss of FLCN moderately impairs basal autophagic flux, while re-expression of FLCN rescues autophagy. We reveal that the FLCN complex is regulated by ULK1 and elucidate 3 novel phosphorylation sites (Ser406, Ser537, and Ser542) within FLCN, which are induced by ULK1 overexpression. In addition, our findings demonstrate that FLCN interacts with a second integral component of the autophagy machinery, GABA(A) receptor-associated protein (GABARAP). The FLCN-GABARAP association is modulated by the presence of either folliculin-interacting protein (FNIP)-1 or FNIP2 and further regulated by ULK1. As observed by elevation of GABARAP, sequestome 1 (SQSTM1) and microtubule-associated protein 1 light chain 3 (MAP1LC3B) in chromophobe and clear cell tumors from a BHD patient, we found that autophagy is impaired in BHD-associated renal tumors. Consequently, this work reveals a novel facet of autophagy regulation by ULK1 and substantially contributes to our understanding of FLCN function by linking it directly to autophagy through GABARAP and ULK1.  相似文献   

14.
Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant condition caused by mutations in the FLCN gene and characterized by benign hair follicle tumors, pneumothorax, and renal cancer. Folliculin (FLCN), the protein product of the FLCN gene, is a poorly characterized tumor suppressor protein, currently linked to multiple cellular pathways. Autophagy maintains cellular homeostasis by removing damaged organelles and macromolecules. Although the autophagy kinase ULK1 drives autophagy, the underlying mechanisms are still being unraveled and few ULK1 substrates have been identified to date. Here, we identify that loss of FLCN moderately impairs basal autophagic flux, while re-expression of FLCN rescues autophagy. We reveal that the FLCN complex is regulated by ULK1 and elucidate 3 novel phosphorylation sites (Ser406, Ser537, and Ser542) within FLCN, which are induced by ULK1 overexpression. In addition, our findings demonstrate that FLCN interacts with a second integral component of the autophagy machinery, GABA(A) receptor-associated protein (GABARAP). The FLCN-GABARAP association is modulated by the presence of either folliculin-interacting protein (FNIP)-1 or FNIP2 and further regulated by ULK1. As observed by elevation of GABARAP, sequestome 1 (SQSTM1) and microtubule-associated protein 1 light chain 3 (MAP1LC3B) in chromophobe and clear cell tumors from a BHD patient, we found that autophagy is impaired in BHD-associated renal tumors. Consequently, this work reveals a novel facet of autophagy regulation by ULK1 and substantially contributes to our understanding of FLCN function by linking it directly to autophagy through GABARAP and ULK1.  相似文献   

15.
Women with BRCA1/2 mutations have a significantly higher lifetime risk of developing breast or ovarian cancer. We suggest that female mutation carriers may have improved fitness owing to enhanced fertility relative to non-carriers. Here we show that women who are carriers of BRCA1/2 mutations living in natural fertility conditions have excess fertility as well as excess post-reproductive mortality in relation to controls. Individuals who tested positive for BRCA1/2 mutations who linked into multi-generational pedigrees within the Utah Population Database were used to identify putative obligate carriers. We find that women born before 1930 who are mutation carriers have significantly more children than controls and have excess post-reproductive mortality risks. They also have shorter birth intervals and end child-bearing later than controls. For contemporary women tested directly for BRCA1/2 mutations, an era when modern contraceptives are available, differences in fertility and mortality persist but are attenuated. Our findings suggest the need to re-examine the wider role played by BRCA1/2 mutations. Elevated fertility of female mutation carriers indicates that they are more fecund despite their elevated post-reproductive mortality risks.  相似文献   

16.
Metallothioneins are cysteine-rich, metal-binding proteins ubiquitously expressed in living organisms. In the last past years, a plethora of vertebrate metallothionein sequences have become available, but so far there has been an almost absolute lack of data about sequences of metallothionein of non-avian diapsida. In the framework of the investigations on structural and functional properties of non-mammalian metallothioneins, we have cloned and sequenced the cDNAs encoding for metallothioneins of 10 squamate reptiles, belonging to 5 different infraorders. These sequences have been used to gain insight into the evolutionary history of metallothioneins in reptiles. Phylogenetic analysis shows that reptilian metallothionein phylogeny is inconsistent with the species phylogeny. Such findings allow us to hypothesize that the identified metallothionein in each squamate species used for this study might be considered a paralogous gene derived from more events of gene duplication and losses occurred during the diversification of the squamate species. Finally, through vertebrate metallothionein comparisons and phylogenetic analysis, we also add a novel contribution to the understanding of the evolution of metallothionein genes along the major vertebrate lineages.  相似文献   

17.
Autosomal recessive polycystic kidney disease (ARPKD) is a rare hereditary renal cystic disease involving multiple organs, mainly the kidney and liver. Parents who had an affected child with ARPKD are in strong demand for an early and reliable prenatal diagnosis to guide the future pregnancies. Here we provide an example of prenatal diagnosis of an ARPKD family where traditional antenatal ultrasound examinations failed to produce conclusive results till 26th week of gestation. Compound heterozygous mutations c.274C>T (p.Arg92Trp) and c.9059T>C (p.Leu3020Pro) were identified using targeted exome sequencing in the patient and confirmed by Sanger sequencing. Further, the mother and father were revealed to be carriers of heterozygous c.274C>T and c.9059T>C mutations, respectively. Molecular prenatal diagnosis was performed for the current pregnancy by direct sequencing plus linkage analysis. Two mutations identified in the patient were both found in the fetus. In conclusion, compound heterozygous PKHD1 mutations were elucidated to be the molecular basis of the patient with ARPKD. The newly identified c.9059T>C mutation in the patient expands mutation spectrum in PKHD1 gene. For those ultrasound failed to provide clear diagnosis, we propose the new prenatal diagnosis procedure: first, screening underlying mutations in PKHD1 gene in the proband by targeted exome sequencing; then detecting causative mutations by direct sequencing in the fetal DNA and confirming results by linkage analysis.  相似文献   

18.
Auditory neuropathy spectrum disorder (ANSD) is caused by dys-synchronous auditory neural response as a result of impairment of the functions of the auditory nerve or inner hair cells, or synapses between inner hair cells and the auditory nerve. To identify a causative gene causing ANSD in the Korean population, we conducted gene screening of the OTOF, DIAPH3, and PJVK genes in 19 unrelated Korean patients with ANSD. A novel nonsense mutation (p.Y1064X) and a known pathogenic mutation (p.R1939Q) of the OTOF gene were identified in a patient as compound heterozygote. Pedigree analysis for these mutations showed co-segregation of mutation genotype and the disease in the family, and it supported that the p.Y1064X might be a novel genetic cause of autosomal recessive ANSD. A novel missense variant p.K1017R (c.3050A>G) in the DIAPH3 gene was also identified in the heterozygous state. In contrast, no mutation was detected in the PJVK gene. These results indicate that no major causative gene has been reported to date in the Korean population and that pathogenic mutations in undiscovered candidate genes may have an effect on ANSD.  相似文献   

19.
Type II citrullinaemia, also known as citrin deficiency, is an autosomal recessive metabolic disorder, which is caused by pathogenic mutations in the SLC25A13 gene on chromosome 7q21.3. One of the clinical manifestations of type II citrullinaemia is neonatal intrahepatic cholestatic hepatitis caused by citrin deficiency (NICCD, OMIM# 605814). In this study, a 5-month-old female Chinese neonate diagnosed with type II citrullinaemia was examined. The diagnosis was based on biochemical and clinical findings, including organic acid profiling using a gas chromatography mass spectrometry (GC/MS), and the patient's parents were unaffected. Approximately 14 kb of the exon sequences of the SLC25A13 and two relative genes (ASS1 and FAH) from the proband and 100 case-unrelated controls were captured by array-based capture method followed by high-throughput next-generation sequencing. Two single-nucleotide mutations were detected in the proband, including the previous reported c.1177+1G>A mutation and a novel c.754G>A mutation in the SLC25A13 gene. Sanger sequence results showed that the patient was a compound heterozygote for the two mutations. The novel mutation (c.754G>A), which is predicted to affect the normal structure and function of citrin, is a candidate pathogenic mutation. Target sequence capture combined with high-throughput next-generation sequencing technologies is proven to be an effective method for molecular genetic testing of type II citrullinaemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号