首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chemical modification of proteins is gaining importance due to the improvement in properties and the broader range of applications that these protein conjugates have. Once modified, several purification strategies need to be applied to isolate the conjugates of interest. Aqueous two‐phase systems (ATPS) are an attractive alternative for the primary recovery of proteins and their conjugates. However, to better understand which biochemical parameters affect in greater degree the partition behavior of these modified proteins in ATPS, it becomes necessary to characterize the partition behavior of different species. In this work, ribonuclease A (RNase A) was selected as a model protein to address the partition behavior of chemically modified proteins in ATPS. Native, mono‐PEGylated, Uniblue A, Dabsyl Chloride, and Direct Red 83 chemically modified RNase A's were partitioned in 16 different polyethylene glycol (PEG)–potassium phosphate ATPS. Results suggest that while the effects of system design parameters govern the partition of native RNase A, the behavior of the chemically modified species is more influenced by the physicochemical characteristics of the modifying molecules, that in most cases promote partition toward the top polymer‐rich phase with recovery percentages as high as 86%. It has been found that both, the hydrophobicity and molecular weight of the modifying species play a preponderant role in conjugate partition behavior since as hydrophobicity increases partition is promoted towards the PEG‐rich phase balancing the effect of the molecular weight of the modifying molecules that tends to shift partition towards the salt rich phase. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 378–385, 2013  相似文献   

3.
We have incorporated artificial lipid-anchored streptavidin conjugates with fully saturated or polyunsaturated lipid anchors into the plasma membranes of Jurkat T-lymphocytes to assess previous conclusions that the activation of signaling processes induced in these cells by clustering of endogenous glycosylphosphatidylinositol-anchored proteins or ganglioside GM1 depends specifically on the association of these membrane components with lipid rafts. Lipid-anchored streptavidin conjugates could be incorporated into Jurkat or other mammalian cell surfaces by inserting biotinylated phosphatidylethanolamine-polyethyleneglycols (PE-PEGs) and subsequently binding streptavidin to the cell-incorporated PE-PEGs. Saturated dipalmitoyl-PE-PEG-streptavidin conjugates prepared in this manner partitioned substantially into the detergent-insoluble membrane fraction isolated from Jurkat or fibroblast cells, whereas polyunsaturated dilinoleoyl-PE-PEG-anchored conjugates were wholly excluded from this fraction, consistent with the differences in the affinities of the two types of lipid anchors for liquid-ordered membrane domains. Remarkably, however, antibody-mediated cross-linking of either dipalmitoyl- or dilinoleoyl-PE-PEG-anchored streptavidin conjugates in Jurkat cells induced elevation of cytoplasmic calcium levels and tyrosine phosphorylation of the scaf-folding protein linker of T-cell activation in a manner similar to that observed upon cross-linking of endogenous CD59 or ganglioside GM1. The amplitude of the cross-linking-stimulated elevation of cytoplasmic calcium moreover showed an essentially identical dependence on the level of incorporated streptavidin conjugate for either type of lipid anchor. Confocal fluorescence microscopy revealed that PE-PEG-streptavidin conjugates with saturated versus polyunsaturated anchors showed very similar surface distributions vis à vis GM1 or CD59 under conditions where one or both species were cross-linked. These results indicate that cross-linking of diverse proteins anchored only to the outer leaflet of the plasma membrane can induce activation of Jurkat T-cell-signaling responses, but they appear to contradict previous suggestions that this phenomenon rests specifically on the association of such species with lipid rafts.  相似文献   

4.

Background

The potential use of nucleic acids as therapeutic drugs has triggered the quest for oligonucleotide conjugates with enhanced cellular permeability. To this end, the biophysical aspects of previously reported potential lipid oligodeoxyribonucleotide conjugates were studied including its membrane-binding properties and cellular uptake.

Methods

These conjugates were fully characterized by MALDI-TOF mass spectrometry and HPLC chromatography. Their ability to insert into lipid model membrane systems was evaluated by Langmuir balance and confocal microscopy followed by the study of the internalization of a lipid oligodeoxyribonucleotide conjugate bearing a double-tail lipid modification (C28) into different cell lines by confocal microscopy and flow cytometry. This compound was also compared with other lipid containing conjugates and with the classical lipoplex formulation using Transfectin as transfection reagent.

Results

This double-tail lipid modification showed better incorporation into both lipid model membranes and cell systems. Indeed, this lipid conjugation was capable of inserting the oligodeoxyribonucleotide into both liquid-disordered and liquid-ordered domains of model lipid bilayer systems and produced an enhancement of oligodeoxyribonucleotide uptake in cells, even better than the effect caused by lipoplexes. In addition, in β2 integrin (CR3) expressing cells this receptor was directly involved in the enhanced internalization of this compound.

Conclusions

All these features confirm that the dual lipid modification (C28) is an excellent modification for enhancing nucleic acid delivery without altering their binding properties.

General significance

Compared to the commercial lipoplex approach, oligodeoxyribonucleotide conjugation with C28 dual lipid modification seems to be promising to improve oligonucleotide delivery in mammalian cells.  相似文献   

5.
Mannose-binding lectins, such as dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN), are expressed at the surface of human dendritic cells (DCs) that capture and transmit human immunodeficiency virus type-1 (HIV-1) to CD4(+) cells. With the goal of reducing viral trans-infection by targeting DC-SIGN, we have designed a new class of mannoside glycolipid conjugates. We report the synthesis of amphiphiles composed of a mannose head, a hydrophilic linker essential for solubility in aqueous media, and a lipid chain of variable length. These conjugates presented unusual properties based on a cooperation between the mannoside head and the lipid chain, which enhanced the affinity and decreased the need for multivalency. With an optimal lipid length, they exhibited strong binding affinity for DC-SIGN (K(d) in the micromolar range) as assessed by surface plasmon resonance. The most active molecules were branched trimannoside conjugates, able to inhibit the interaction of the HIV-1 envelope with DCs, and to drastically reduce trans-infection of HIV-1 mediated by DCs (IC(50s) in the low micromolar range). This new class of compounds may be of potential use for prevention of HIV-1 dissemination, and also of infection by other DC-SIGN-binding human pathogens.  相似文献   

6.
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.It is now well established that membranes along the endocytic and secretory pathway show differences not only in protein but also in lipid composition. For example, lipid gradients exist along the biosynthetic pathway with increasing density of cholesterol and sphingolipids from the endoplasmic reticulum (ER) to the plasma membrane (Maxfield and van Meer 2010). Also, phosphoinositides show distributions restricted to relatively well-characterized membrane territories (Di Paolo and De Camilli 2006). Given the facts that lipids are small and contain little structural information when compared with proteins, that they can diffuse rapidly within membranes, and that membranes are connected by membrane flow during transport, it is not always obvious how different lipids are segregated from each other.In this article, we will evoke different mechanisms that may contribute to the heterogeneous lipid composition of endocytic membranes, including physicochemical properties of the membrane, interactions with other proteins or lipids, and synthesis or degradation. In addition, it has also become apparent that peripheral membrane proteins often interact with membranes via diverse lipid-binding motifs, and thus that lipids directly contribute to the distribution of many peripheral membrane proteins. For example, phosphatidylinositol 3-phosphate (PI(3)P) is detected predominantly on early endosomes, where most characterized PI(3)P-binding proteins encoded by the human genome are found as well (Raiborg et al. 2013). We will also discuss how some lipids may regulate protein sorting and membrane transport within the endosomal system.  相似文献   

7.
8.
Lipid rafts: bringing order to chaos   总被引:27,自引:0,他引:27  
Lipid rafts are subdomains of the plasma membrane that contain high concentrations of cholesterol and glycosphingolipids. They exist as distinct liquid-ordered regions of the membrane that are resistant to extraction with nonionic detergents. Rafts appear to be small in size, but may constitute a relatively large fraction of the plasma membrane. While rafts have a distinctive protein and lipid composition, all rafts do not appear to be identical in terms of either the proteins or the lipids that they contain. A variety of proteins, especially those involved in cell signaling, have been shown to partition into lipid rafts. As a result, lipid rafts are thought to be involved in the regulation of signal transduction. Experimental evidence suggests that there are probably several different mechanisms through which rafts control cell signaling. For example, rafts may contain incomplete signaling pathways that are activated when a receptor or other required molecule is recruited into the raft. Rafts may also be important in limiting signaling, either by physical sequestration of signaling components to block nonspecific interactions, or by suppressing the intrinsic activity of signaling proteins present within rafts. This review provides an overview of the physical characteristics of lipid rafts and summarizes studies that have helped to elucidate the role of lipid rafts in signaling via receptor tyrosine kinases and G protein-coupled receptors.  相似文献   

9.
As a step in their turnover proteins in eukaryotic cells are coupled to a small protein, ubiquitin, before they are recognised by 26S proteasomes and degraded. However, cells also contain many deubiquitinating enzymes, which can rescue proteins by cleaving off the ubiquitin chains. Here we report that three ubiquitin binding proteins, Rhp23, Dph1 and Pus1, from fission yeast can protect multiubiquitin conjugates against deubiquitination. This protection depends on the ubiquitin binding domains and may promote degradation of ubiquitinated proteins.  相似文献   

10.
The lipid bilayer is a 3D assembly with a rich variety of physical features that modulate cell signaling and protein function. Lateral and transverse forces within the membrane are significant and change rapidly as the membrane is bent or stretched and as new constituents are added, removed or chemically modified. Recent studies have revealed how differences in structure between the two leaflets of the bilayer and between different areas of the bilayer can interact together with membrane deformation to alter the activities of transmembrane channels and peripheral membrane binding proteins. Here, we highlight some recent reports that the physical properties of the membrane can help control the function of transmembrane proteins and the motor-dependent elongation of internal organelles, such as the endoplasmic reticulum.  相似文献   

11.
The analysis of lipid protein interaction is difficult because lipids are embedded in cell membranes and therefore, inaccessible to most purification procedures. As an alternative, lipids can be coated on flat surfaces as used for lipid ELISA and Plasmon resonance spectroscopy. However, surface coating lipids do not form microdomain structures, which may be important for the lipid binding properties. Further, these methods do not allow for the purification of larger amounts of proteins binding to their target lipids. To overcome these limitations of testing lipid protein interaction and to purify lipid binding proteins we developed a novel method termed lipid vesicle-mediated affinity chromatography using magnetic-activated cell sorting (LIMACS). In this method, lipid vesicles are prepared with the target lipid and phosphatidylserine as the anchor lipid for Annexin V MACS. Phosphatidylserine is a ubiquitous cell membrane phospholipid that shows high affinity to the protein Annexin V. Using magnetic beads conjugated to Annexin V the phosphatidylserine-containing lipid vesicles will bind to the magnetic beads. When the lipid vesicles are incubated with a cell lysate the protein binding to the target lipid will also be bound to the beads and can be co-purified using MACS. This method can also be used to test if recombinant proteins reconstitute a protein complex binding to the target lipid. We have used this method to show the interaction of atypical PKC (aPKC) with the sphingolipid ceramide and to co-purify prostate apoptosis response 4 (PAR-4), a protein binding to ceramide-associated aPKC. We have also used this method for the reconstitution of a ceramide-associated complex of recombinant aPKC with the cell polarity-related proteins Par6 and Cdc42. Since lipid vesicles can be prepared with a variety of sphingo- or phospholipids, LIMACS offers a versatile test for lipid-protein interaction in a lipid environment that resembles closely that of the cell membrane. Additional lipid protein complexes can be identified using proteomics analysis of lipid binding protein co-purified with the lipid vesicles.Download video file.(48M, mov)  相似文献   

12.
Lipids are produced, transported, and recognized by the concerted actions of numerous enzymes, binding proteins, and receptors. A comprehensive analysis of lipid molecules, "lipidomics," in the context of genomics and proteomics is crucial to understanding cellular physiology and pathology; consequently, lipid biology has become a major research target of the postgenomic revolution and systems biology. To facilitate international communication about lipids, a comprehensive classification of lipids with a common platform that is compatible with informatics requirements has been developed to deal with the massive amounts of data that will be generated by our lipid community. As an initial step in this development, we divide lipids into eight categories (fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, saccharolipids, and polyketides) containing distinct classes and subclasses of molecules, devise a common manner of representing the chemical structures of individual lipids and their derivatives, and provide a 12 digit identifier for each unique lipid molecule. The lipid classification scheme is chemically based and driven by the distinct hydrophobic and hydrophilic elements that compose the lipid. This structured vocabulary will facilitate the systematization of lipid biology and enable the cataloging of lipids and their properties in a way that is compatible with other macromolecular databases.  相似文献   

13.
Integrins αvβ3 and αvβ6 are highly expressed on tumor cells and/or by the tumor vasculature of many human cancers, and represent promising targets for anticancer therapy. Novel chemically programmed antibodies (cpAbs) targeting these integrins were prepared using the catalytic aldolase Antibody (Ab) programming strategy. The effects of the cpAbs on cellular functions related to tumor progression were examined in vitro using tumor cell lines and their cognate integrin ligands, fibronectin and osteopontin. The inhibitory functions of the conjugates and their specificity were examined based on interference with cell-cell and cell-ligand interactions related to tumor progression. Cell binding analyses of the anti-integrin cpAbs revealed high affinity for tumor cells that overexpressed αvβ3 and αvβ6 integrins, and weak interactions with αvβ1 and αvβ8 integrins, in vitro. Functional analyses demonstrated that the cpAbs strongly inhibited cell-cell interactions through osteopontin binding, and they had little or no immediate effects on cell viability and proliferation. On the basis of these characteristics, the cpAbs are likely to have a broad range of activities in vivo, as they can target and antagonize one or multiple αv integrins expressed on tumors and tumor vasculatures. Presumably, these conjugates may inhibit the establishment of metastastatic tumors in distant organs through interfering with cell adhesion more effectively than antibodies or compounds targeting one integrin only. These anti-integrin cpAbs may also provide useful reagents to study combined effect of multiple αv integrins on cellular functions in vitro, on pathologies, including tumor angiogenesis, fibrosis, and epithelial cancers, in vivo.  相似文献   

14.
A wide variety of proteins are tethered by a glycosylphosphatidylinositol (GPI) anchor to the extracellular face of eukaryotic plasma membranes, where they are involved in a number of functions ranging from enzymatic catalysis to adhesion. The exact function of the GPI anchor has been the subject of much speculation. It appears to act as an intracellular signal targeting proteins to the apical surface in polarized cells. GPI-anchored proteins are sorted into sphingolipid- and cholesterol-rich microdomains, known as lipid rafts, before transport to the membrane surface. Their localization in raft microdomains may explain the involvement of this class of proteins in signal transduction processes. Substantial evidence suggests that GPI-anchored proteins may interact closely with the bilayer surface, so that their functions may be modulated by the biophysical properties of the membrane. The presence of the anchor appears to impose conformational restraints, and its removal may alter the catalytic properties and structure of a GPI-anchored protein. Release of GPI-anchored proteins from the cell surface by specific phospholipases may play a key role in regulation of their surface expression and functional properties. Reconstitution of GPI-anchored proteins into bilayers of defined phospholipids provides a powerful tool with which to explore the interactions of these proteins with the membrane and investigate how bilayer properties modulate their structure, function, and cleavage by phospholipases.  相似文献   

15.
The oxidation of unsaturated lipids commonly occurs at oil-water interfaces in heterogeneous foods (such as emulsions), and so there is a need for surface-active antioxidants to inhibit lipid oxidation. In this study, catechin was oxidatively polymerized by horseradish peroxidase to obtain catechin polymers (CTP). An amphiphilic antioxidant was then produced by conjugating CTP with egg white proteins (EWP) using a hydrogen peroxide-ascorbic acid pair as a radical initiator system. The covalent attachment of CTP to EWP was confirmed by electrophoresis, liquid chromatography-mass spectrometry, and fluorescence analyses. The antioxidant capacity of CTP-EWP conjugates was evaluated using several in vitro models. The conjugates exhibited strong scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (79% at 1 mg/mL), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (97% at 0.5 mg/mL), and had a high ferric reducing power. Furthermore, CTP-EWP conjugates exhibited an inhibitive effect on lipid peroxidation in linoleic acid oil-in-water emulsions, indicating that the conjugates may have potential applications in food, pharmaceutical and cosmetic industries.  相似文献   

16.
M Donner  J F Stoltz 《Biorheology》1985,22(5):385-397
Important cellular functions, such as rheological properties of cells are presumably related to the membrane lipid fluidity which may be approached by the use of fluorescence polarization method. However, biological membranes represent very heterogeneous media and the knowledge of the fluidity of membrane compartments requires the use of different probes. Two fluorescent probes, DPH and its cationic derivative, TMA-DPH, have been employed to probe the lipid fluidity of human platelets and red cell membranes. The results show that the informations given by DPH and TMA-DPH can present important differences, suggesting that DPH and TMA-DPH are localized in different regions of cell membranes. In an attempt to investigate relations between lipid fluidity and rheological properties of red cells, the behavior of probes was studied in a "Couette" viscometer with a device for studying the emissive properties of probes when red cell membranes are under shear conditions.  相似文献   

17.
Effects of membrane lipids on ion channel structure and function   总被引:9,自引:0,他引:9  
Biologic membranes are not simply inert physical barriers, but complex and dynamic environments that affect membrane protein structure and function. Residing within these environments, ion channels control the flux of ions across the membrane through conformational changes that allow transient ion flux through a central pore. These conformational changes may be modulated by changes in transmembrane electrochemical potential, the binding of small ligands or other proteins, or changes in the local lipid environment. Ion channels play fundamental roles in cellular function and, in higher eukaryotes, are the primary means of intercellular signaling, especially between excitable cells such as neurons. The focus of this review is to examine how the composition of the bilayer affects ion channel structure and function. This is an important consideration because the bilayer composition varies greatly in different cell types and in different organellar membranes. Even within a membrane, the lipid composition differs between the inner and outer leaflets, and the composition within a given leaflet is both heterogeneous and highly dynamic. Differential packing of lipids (and proteins) leads to the formation of microdomains, and lateral diffusion of these microdomains or "lipid rafts" serve as mobile platforms for the clustering and organization of bilayer constituents including ion channels. The structure and function of these channels are sensitive to specific chemical interactions with neighboring components of the membrane and also to the biophysical properties of their membrane microenvironment (e.g., fluidity, lateral pressure profile, and bilayer thickness). As specific examples, we have focused on the K+ ion channels and the ligand-gated nicotinicoid receptors, two classes of ion channels that have been well-characterized structurally and functionally. The responsiveness of these ion channels to changes in the lipid environment illustrate how ion channels, and more generally, any membrane protein, may be regulated via cellular control of membrane composition.  相似文献   

18.
Septins are GTP-binding proteins that form filaments and higher-order structures on the cell cortex of eukaryotic cells and associate with actin and microtubule cytoskeletal networks. When assembled, septins coordinate cell division and contribute to cell polarity maintenance and membrane remodeling. These functions manifest themselves via scaffolding of cytosolic proteins and cytoskeletal networks to specific locations on membranes and by forming diffusional barriers that restrict lateral diffusion of proteins embedded in membranes. Notably, many neurodegenerative diseases and cancers have been characterized as having misregulated septins, suggesting that their functions are relevant to diverse diseases. Despite the importance of septins, little is known about what features of the plasma membrane influence septin recruitment and alternatively, how septins influence plasma membrane properties. Septins have been localized to the cell cortex at the base of cilia, the mother-bud neck of yeast, and branch points of filamentous fungi and dendritic spines, in cleavage furrows, and in retracting membrane protrusions in mammalian cells. These sites all possess some degree of curvature and are likely composed of distinct lipid pools. Depending on the context, septins may act alone or in concert with other cytoskeletal elements to influence and sense membrane properties. The degree to which septins react to and/or induce changes in shape and lipid composition are discussed here. As septins are an essential player in basic biology and disease, understanding the interplay between septins and the plasma membrane is critical and may yield new and unexpected functions.  相似文献   

19.
Glucocorticoids (GC) are widely used anti-inflammatory agents known to suppress T cell activation by interfering with the TCR activation cascade. The attenuation of early TCR signaling events by these compounds has been recently attributed to a selective displacement of key signaling proteins from membrane lipid rafts. In this study, we demonstrate that GC displace the acyl-bound adaptor proteins linker for activation of T cells and phosphoprotein associated with glycosphingolipid-enriched microdomains from lipid rafts of murine T cell hybridomas, possibly by inhibiting their palmitoylation status. Analysis of the lipid content of the membrane rafts revealed that GC treatment led to a significant decrease in palmitic acid content. Moreover, we found an overall decrease in the proportion of raft-associated saturated fatty acids. These changes were consistent with a decrease in fluorescence anisotropy of isolated lipid rafts, indicating an increase in their fluidity. These findings identify the mechanisms underlying the complex inhibitory effects of glucocorticoids on early TCR signaling and suggest that some of the inhibitory properties of GC on T cell responses may be related to their ability to affect the membrane lipid composition and the palmitoylation status of important signaling molecules.  相似文献   

20.
Formation of an immunological synapse (IS) between APCs and T CD4(+) lymphocytes is a key event in the initiation and the termination of the cognate immune response. We have analyzed the contribution of the APC to IS formation and report the implication of the actin cytoskeleton, the signaling proteins and the lipid rafts of B lymphocytes. Recruitment of MHC class II molecules to the IS is concomitant with actin cytoskeleton-dependent B cell raft recruitment. B cell actin cytoskeleton disruption abrogates both IS formation and T cell activation, whereas protein kinase C inhibition only impairs T cell activation. Pharmacological B cell lipid raft disruption inhibited peptide-dependent T lymphocyte activation and induced peptide-independent but HLA-DR-restricted APC-T cell conjugate formation. Such peptide-independent conjugates did not retain the ability to activate T cells. Thus, B cell lipid rafts are bifunctional by regulating T cell activation and imposing peptide stringency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号