首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Experimental models can be used for pre-clinical testing of cemented and other type of hip replacements. Total hip replacement (THR) failure scenarios include, among others, cement damage accumulation and the assessment of accurate stress and strain magnitudes at the cement mantle interfaces (stem-cement and cement-bone) can be used to predict mechanical failure. The aseptic loosening scenario in cemented hip replacements is currently not fully understood, and methods of evaluating medical devices must be developed to improve clinical performance. Different results and conclusions concerning the cement micro-cracking mechanism have been reported.The aim of this study was to verify the in vitro behavior of two cemented femoral stems with respect to fatigue crack formation. Fatigue crack damage was assessed at the medial, lateral, anterior and posterior sides of the Lubinus SPII and Charnley stems. All stems were loaded and tested in stair climbing fatigue loading during one million cycles at 2 Hz. After the experiments each implanted synthetic femur was sectioned and analyzed. We observed more damage (cracks per area) for the Lubinus SPII stem, mainly on the proximal part of the cement mantle. The micro-cracking formation initiated in the stem–cement interface and grew towards the direction of cortical bone of the femur.Overall, the cement–bone interface seems to be crucial for the success of the hip replacement. The Charnley stem provoked more damage on the cement–bone interface. A failure index (maximum length of crack/maximum thickness of cement) considered was higher for the cement–stem interface of the Lubinus SPII stem. For a cement mantle thickness higher than 5 mm, cracking initiated at the cement–bone interface and depended on the opening canal process (reaming procedure and instrumentation). The analysis also showed that fatigue-induced damage on the cement mantle, increasing proximally, and depended on the axial position of the stem. The cement thickness is an important factor for the success of THR and this study evidenced that cement thickness higher than 2 mm apparently does not affect the mechanical behavior of the cement mantel and induce more crack formation on the cement–bone interface.  相似文献   

2.
In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically implemented in four different ways: (I) as infinitely stiff, (II) as infinitely strong with a constant stiffness, (III) a mixed-mode failure response with failure in tension and shear, and (IV) realistic mixed mode behavior obtained from micro-FEA models. Case II, III, and IV were analyzed using data from a stiff and a compliant micro-FEA model and their effects on cement failure were analyzed. The data used for Case IV was derived from experimental specimens that were tested previously. Although the total number of cement cracks was low for all cases, the compliant Case II resulted in twice as many cracks as Case I. All cases caused similar stress distributions at the interface. In all cases, the interface did not display interfacial softening; all stayed the elastic zone. Fatigue failure of the cement mantle resulted in a more favorable stress distribution at the cement-bone interface in terms of less tension and lower shear tractions. We conclude that immediate cement-bone interface failure is not likely to occur, but its local compliancy does affect the formation of cement cracks. This means that at a macro-level the cement-bone interface should be modeled as a compliant layer. However, implementation of interfacial post-yield softening does seems to be necessary.  相似文献   

3.
This study aimed to improve understanding of the mechanical aspects of cemented implant loosening. After aggressive fatigue loading of stem/cement/femur constructs, micro-cracks and stem/bone micro-motions were quantified to answer three research questions: Are cracks preferentially associated with the stem/cement interface, the cement/bone interface or voids? Is cement damage dependent on axial position? Does cement damage correlate with micro-motion between the stem and the bone? Eight Charnley Cobra stems were implanted in cadaveric femora. Six stem/cement/femur constructs were subjected to "stair-climbing" loads for 300 kcycles at 2Hz. Loads were normalized by construct stiffness to avoid fracture. Two additional constructs were not loaded. Transverse sections were cut at 10mm intervals, stained with a fluorescent dye penetrant and examined using epi-fluorescence stereomicroscopy. Crack lengths and cement areas were recorded for 9 sections per specimen. Crack length-density was calculated by dividing summed crack length by cement mantle area. To isolate the effect of loading, length-density data were offset by the baseline length-density measured in the non-loaded specimens. Significantly more cracks were associated with the interdigitated area (35.1%+/-11.6%) and the cement/bone interface (31.0%+/-6.2%) than with the stem/cement interface (11.0%+/-5.2%) or voids (6.1%+/-4.8%) (p<0.05). Load-induced micro-crack length-density was significantly dependent on axial position, increasing proximally (p<0.001). Micro-motions were small, all stems rotated internally. Cement damage did not correlate with micro-motion.  相似文献   

4.
Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy; cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and pre-load cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature; in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers.  相似文献   

5.
The aim of this study is to define stem design related factors causing both gaps in the metal-bone cement interface and cracks within the cement mantle. Six different stem designs (Exeter; Lubinus SP II; Ceraver Osteal; Mueller-straight stem; Centega; Spectron EF) (n=15 of each design) were cemented into artificial femur bones. Ten stems of each design were loaded, while five stems served as an unloaded control. Physiologically adapted cyclical loading (DIN ISO 7206-4) was performed with a hip simulator. After loading both interfaces and the bone cement itself were analysed regarding gaps and cracks in the cement mantle. Significant differences between the stem designs concerning gaps in the metal-bone cement interface and cracks in the cement mantle became apparent. Additionally, a high correlation between gaps in the metal-bone cement interface and cracks within the cement mantle could be proven. Gaps in the metal-bone cement interface but no cracks within the cement mantle were seen in the unloaded specimens. Differences between the unloaded control groups and the cyclical loaded stems regarding the longitudinal extension and width of gaps in the metal-bone cement interface were obvious. The designs of cemented femoral stems have an influence on both the quality of the metal-bone cement contact and the failure rate of the cement mantle. Less interface gaps and less cement defects were found with anatomically formed, collared, well-rounded stem designs without undercuttings.  相似文献   

6.
While including the cement-bone interface of complete cemented hip reconstructions is crucial to correctly capture their response, its modelling is often overly simplified. In this study, the mechanical mixed-mode response of the cement-bone interface is investigated, taking into account the effects of the well-defined microstructure that characterises the interface. Computed tomography-based plain strain finite element analyses models of the cement-bone interface are built and loaded in multiple directions. Periodic boundaries are considered and the failure of the cement and bone fractions by cracking of the bulk components are included. The results compare favourably with experimental observations. Surprisingly, the analyses reveal that under shear loading no failure occurs and considerable normal compression is generated to prevent interface dilation. Reaction forces, crack patterns and stress fields provide more insight into the mixed-mode failure process. Moreover, the cement-bone interface analyses provide details which can serve as a basis for the development of a cohesive law.  相似文献   

7.
Loss of fixation at the cement-bone interface can contribute to clinical loosening of cemented total hip replacements. In this study, the fatigue damage response was determined for cement-bone constructs subjected to shear fatigue loading. A typical three-phase fatigue response was observed with substantial early damage, followed by a long constant damage rate region and a final abrupt increase in damage to fracture. All of the damage resulted from creep (permanent) deformation during fatigue loading and there was no loss in cyclic stiffness. Using a Von Mises equivalent stress/strain concept, a general damage model was developed to describe the fatigue creep response of the cement-bone interface under either shear or tensile fatigue loading. Time to failure was highly correlated (r2=0.971) with equivalent creep strain rate and moderately related (r2=0.428) with equivalent initial strain for the two loading regimes. The equivalent creep strain at failure (0.052+/-0.018) was found to be independent of the applied equivalent stress. A combination of the creep damage model (to describe the damage process) with a constant final equivalent strain (as a failure criteria) could be used to assess the cement-bone failure response of cemented implant systems.  相似文献   

8.
Late loosening of cemented acetabular cups is increasingly being recognized as a clinical problem. One of the factors which may contribute to loosening is high localized deformation and stress at the cement-bone interface, the magnitude of which depends on the size of the total hip replacement (THR) femoral head. The effects of varying the femoral head size, from 22 to 32 mm, on strain values measured on the surface of the cup were investigated using experimental stress analysis techniques. The largest absolute strains were recorded when loading with the 22 mm head size. Peak strain values decreased to a minimum with the 26 mm head size and increased steadily with head sizes beyond 26 mm. The selection of an acetabular cup size and corresponding femoral head size in a total hip arthroplasty should not be an arbitrary one, but should be based on scientific studies which indicate minimum states of stress within the cup and cement mantle, as well as clinical evidence that the combination of components shows a reduced incidence of failure. This study experimentally quantifies the states of stress on the surface of the acetabular cup and points to the possible existence of an optimum component size to minimize surface stress.  相似文献   

9.
Fatigue cracking in the cement mantle of total hip replacement has been identified as a possible cause of implant loosening. Retrieval studies and in vitro tests have found porosity in the cement may facilitate fatigue cracking of the mantle. The fatigue process has been simulated computationally using a finite element/continuum damage mechanics (FE/CDM) method and used as a preclinical testing tool, but has not considered the effects of porosity. In this study, experimental tensile and four-point bend fatigue tests were performed. The tensile fatigue S-N data were used to drive the computational simulation (FE/CDM) of fatigue in finite element models of the tensile and four-point bend specimens. Porosity was simulated in the finite element models according to the theory of elasticity and using Monte Carlo methods. The computational fatigue simulations generated variability in the fatigue life at any given stress level, due to each model having a unique porosity distribution. The fracture site also varied between specimens. Experimental validation was achieved for four-point bend loading, but only when porosity was included. This demonstrates that the computational simulation of fatigue, driven by uniaxial S-N data can be used to simulate nonuniaxial loadcases. Further simulations of bone cement fatigue should include porosity to better represent the realities of experimental models.  相似文献   

10.
Peak stress levels predicted in finite element analysis (FEA) usually depend on mesh density, due to singular points in the model. In an earlier study, an FEA algorithm was developed to simulate the damage accumulation process in the cement mantle around total hip replacement (THR) implants. It allows cement crack formation to be predicted, as a function of the local cement stress levels. As the simulation is driven by mesh-dependent peak stresses, predicted crack formation rates are also likely to be mesh dependent. The aim of this study was to evaluate the mesh dependence of the predicted crack formation process, and to present a method to reduce the mesh dependence. Crack-propagation experiments were simulated. Experimental specimens, representing transverse slices of cemented THR reconstructions, were subjected to cyclic torsional loading. Crack development around the corners of the stem was monitored. The experiments were simulated using three meshes with increasing levels of mesh refinement. Crack locations and orientations were accurately predicted, and were virtually independent of the level of mesh refinement. However, the experimental crack propagation rates were overestimated considerably, increasing with mesh refinement. To eliminate the effect of stress singularities around the corners of the stem, a stress averaging algorithm was applied in the simulation. This algorithm redistributed the stresses by weighted spatial averaging. When damage accumulation was computed based on averaged stresses, the crack propagation rates predicted were independent of the level of mesh refinement. The critical distance, a parameter governing the effect of the averaging algorithm, was optimized such that the predicted crack propagation rates accurately corresponded to the experimental ones. These results are important for the validity and standardization of pre-clinical testing methods for orthopaedic implants.  相似文献   

11.
In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.  相似文献   

12.
It has been proposed that bone damageability (i.e. bone's susceptibility to formation of damage) increases with the elevation or suppression of bone turnover. Suppression of turnover via bisphosphonates increases local bone mineralization, which theoretically should increase the susceptibility of bone to microcrack formation. Elevation of bone turnover has also been proposed to increase bone microdamage through an increase in bone intracortical porosity and local stresses and strains. The goal of this paper was to investigate the above proposals, i.e., whether or not increases to mineral content and porosity increase bone in-service damageability. To do this, we measured in vivo diffuse damage area (Df.Dm.Ar, %) and microcrack density (Cr.Dn) (cracks/mm(2)) in the same specimen from human cortical bone of the midshaft of the proximal femur obtained from cadavers with an age range of eight decades and examined their relationships with porosity, mineralization and age. Results of this study showed that Cr.Dn and Df.Dm.Ar increased with a decrease in bulk mineralization. This finding does not appear to support the proposal that damage accumulation increases with low bone turnover that results in increases mineralization. It was proposed however that the negative correlation between damage accumulation and mineralization may be attributed to highly mineralized regions of bone existing with under-mineralized regions resulting in an overall decrease in average bone mineralization. It was also found that microdamage accumulates with increasing porosity which does appear to support the proposal that elevated bone turnover that results in increased porosity can accelerate microdamage accumulation. Finally, it was shown that linear microcracks and Df.Dm.Ar accumulate with age differently, but because they correlate with each other, one may be the precursor for the other.  相似文献   

13.

Bulk properties of cortical bone have been well characterized experimentally, and potent toughening mechanisms, e.g., crack deflections, have been identified at the microscale. However, it is currently difficult to experimentally measure local damage properties and isolate their effect on the tissue fracture resistance. Instead, computer models can be used to analyze the impact of local characteristics and structures, but material parameters required in computer models are not well established. The aim of this study was therefore to identify the material parameters that are important for crack propagation in cortical bone and to elucidate what parameters need to be better defined experimentally. A comprehensive material parameter study was performed using an XFEM interface damage model in 2D to simulate crack propagation around an osteon at the microscale. The importance of 14 factors (material parameters) on four different outcome criteria (maximum force, fracture energy, crack length and crack trajectory) was evaluated using ANOVA for three different osteon orientations. The results identified factors related to the cement line to influence the crack propagation, where the interface strength was important for the ability to deflect cracks. Crack deflection was also favored by low interface stiffness. However, the cement line properties are not well determined experimentally and need to be better characterized. The matrix and osteon stiffness had no or low impact on the crack pattern. Furthermore, the results illustrated how reduced matrix toughness promoted crack penetration of the cement line. This effect is highly relevant for the understanding of the influence of aging on crack propagation and fracture resistance in cortical bone.

  相似文献   

14.
The initial fixation of a cemented hip implant relies on the strength of the interface between the stem, bone cement and adjacent bone. Bone cement is used as grouting material to fix the prosthesis to the bone. The curing process of bone cement is an exothermic reaction where bone cement undergoes volumetric changes that will generate transient stresses resulting in residual stresses once polymerization is completed. However, the precise magnitude of these stresses is still not well documented in the literature. The objective of this study is to develop an experiment for the direct measurement of the transient and residual radial stresses at the stem-cement interface generated during cement polymerization. The idealized femoral-cemented implant consists of a stem placed inside a hollow cylindrical bone filled with bone cement. A sub-miniature load cell is inserted inside the stem to make a direct measurement of the radial compressive forces at the stem-cement interface, which are then converted to radial stresses. A thermocouple measures the temperature evolution during the polymerization process. The results show the evolution of stress generation corresponding to volumetric changes in the cement. The effect of initial temperature of the stem and bone as well as the cement-bone interface condition (adhesion or no adhesion) on residual radial stresses is investigated. A maximum peak temperature of 70 degrees C corresponds to a peak in transient stress during cement curing. Maximum radial residual stresses of 0.6MPa in compression are measured for the preheated stem.  相似文献   

15.
Mechanical fatigue of bone cement leading to damage accumulation is implicated in the loosening of cemented hip components. Even though cracks have been identified in autopsy-retrieved mantles, damage accumulation by continuous growth and increase in number of microcracks has not yet been demonstrated experimentally. To determine just how damage accumulation occurs in the cement layer of a hip replacement, a physical model of the joint was used in an experimental study. The model regenerates the stress pattern found in the cement layers whilst at the same time allowing visualisation of microcrack initiation and growth. In this way the gradual process of damage accumulation can be determined. Six specimens were tested to 5 million cycles and a total of 1373 cracks were observed. It was found that, under the flexural loading allowed by the model, the majority of cracks come from pores in the bulk cement and not from the interfaces. Furthermore, the lateral and medial sides have statistically different damage accumulation behaviours, and pre-load cracks significantly accelerate the damage accumulation process. The experimental results confirm that damage accumulation commences early on in the loading history and that it is continuously increasing with load in the form of crack initiation and crack propagation. The results highlight the importance of replicating the loading and restraint conditions of clinical cement mantles when endeavouring to accurately model the damage accumulation process.  相似文献   

16.
Cemented stem constructs were loaded in cyclic fatigue using stair climbing loading and the resulting fatigue damage to the cement mantle was determined in terms of angular position of crack and crack length. Techniques from circular statistics were used to determine if the distribution of micro-cracks was uniform. With a designated orientation of 0 degrees -90 degrees -180 degrees -270 degrees indicating lateral-anterior-medial-posterior anatomic directions, the overall distribution of cracks was not uniform (p<0.05) with a mean crack direction in the postero-medial (249 degrees) quadrant of the mantle. The crack angular distribution for proximal (postero-medial; 251 degrees) and distal (antero-medial; 112 degrees) regions of the cement mantle was also different (p<0.025). These findings suggest that the location of cement damage depends on anatomic position and appears to correspond with the tensile stress field in the cement mantle.  相似文献   

17.
The clinical success of polished tapered stems has been widely reported in numerous long term studies. The mechanical environment that exists for polished tapered stems, however, is not fully understood. In this investigation, a collarless, tapered femoral total hip stem with an unsupported distal tip was evaluated using a 'physiological' three-dimensional (3D) finite element analysis. It was hypothesized that stem-cement interface friction, which alters the magnitude and orientation of the cement mantle stress, would subsequently influence stem 'taper-lock' and viscoelastic relaxation of bone cement stresses. The hypothesis that creep-induced subsidence would result in increases to stem-cement normal (radial) interface stresses was also examined. Utilizing a viscoelastic material model for the bone cement in the analysis, three different stem-cement interface conditions were considered: debonded stem with zero friction coefficient (mu=0) (frictionless), debonded stem with stem-cement interface friction (mu=0.22) ('smooth' or polished) and a completely bonded stem ('rough'). Stem roughness had a profound influence on cement mantle stress, stem subsidence and cement mantle stress relaxation over the 24-h test period. The frictionless and smooth tapered stems generated compressive normal stress at the stem-cement interface creating a mechanical environment indicative of 'taper-lock'. The normal stress increased with decreasing stem-cement interface friction but decreased proximally with time and stem subsidence. Stem subsidence also increased with decreasing stem-cement interface friction. We conclude that polished stems have a greater potential to develop 'taper-lock' fixation than do rough stems. However, subsidence is not an important determinant of the maintenance of 'taper-lock'. Rather subsidence is a function of stem-cement interface friction and bone cement creep.  相似文献   

18.
Q He  H Chen  L Huang  J Dong  D Guo  M Mao  L Kong  Y Li  Z Wu  W Lei 《PloS one》2012,7(8):e42525

Background

Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.

Materials and Methods

The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant–bone interface was also investigated by push-out tests.

Results

The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.

Conclusions

Our findings suggested a new bioactive bone cement for prosthetic fixation in total joint replacement.  相似文献   

19.
The long-term behavior of the stem-cement interface is one of the most frequent topics of discussion in the design of cemented total hip replacements, especially with regards to the process of damage accumulation in the cement layer. This effect is analyzed here comparing two different situations of the interface: completely bonded and debonded with friction. This comparative analysis is performed using a probabilistic computational approach that considers the variability and uncertainty of determinant factors that directly compromise the damage accumulation in the cement mantle. This stochastic technique is based on the combination of probabilistic finite elements (PFEM) and a cumulative damage approach known as B-model. Three random variables were considered: muscle and joint contact forces at the hip (both for walking and stair climbing), cement damage and fatigue properties of the cement. The results predicted that the regions with higher failure probability in the bulk cement are completely different depending on the stem-cement interface characteristics. In a bonded interface, critical sites appeared at the distal and medial parts of the cement, while for debonded interfaces, the critical regions were found distally and proximally. In bonded interfaces, the failure probability was higher than in debonded ones. The same conclusion may be established for stair climbing in comparison with walking activity.  相似文献   

20.
Glenoid component loosening is the most-frequently encountered problem in the total shoulder arthroplasty. The purpose of the study was to investigate whether failure of the glenoid component is caused by stresses generated within the cement mantle, implant materials and at the various interfaces during humeral abduction, using 3-D FE analyses of implanted glenoid structures. FE models, one total polyethylene and the other, metal backed polyethylene, were developed using CT-scan data and submodelling technique, which was based on an overall solution of a natural scapula model acted upon by all the muscles, ligaments and joint reaction forces. Material interfaces were assumed to be fully bonded. Based on the FE stress analysis, the following observations were made. (1) The submodelling technique, which required a large-size submodel and the use of prescribed displacements at cut-boundaries located far away from the glenoid, was crucial for evaluations on glenoid component. (2) Total polyethylene results in lower-peak stresses (tensile: 10 MPa, Von-Mises: 8.31 MPa) in the cement as compared to a metal-backed design (tensile: 11.5 MPa, Von-Mises: 9.81 MPa). The maximum principal (tensile) stresses generated in the cement mantle for both the designs were below its failure strength, but might evoke crack initiation. (3) The cement-bone interface adjacent to the tip of the keel seemed very likely to fail for both the designs. In case of metal-backed design, this interface adjacent to the tip of the keel appears even more likely to fail. (4) High metal-cement interface stresses for a moderate load might indicate failure at higher load. (5) It appears that both the designs were vulnerable to failure in some ways or the other. A part of the subchondral bone along the longitudinal axis of the glenoid cavity should be preserved to strengthen the glenoid structure and to reduce the use of cement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号