首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field study was done to assess the potential benefit of arbuscular mycorrhizal (AM) inoculation of elite strawberry plants on plant multiplication, under typical strawberry nursery conditions and, in particular, high soil P fertility (Mehlich-3 extractible P=498 mg kg−1). Commercially in vitro propagated elite plants of five cultivars (‘Chambly,’ ‘Glooscap,’ ‘Joliette,’ ‘Kent,’ and ‘Sweet Charlie’) were transplanted in noninoculated growth substrate or in substrate inoculated with Glomus intraradices or with a mixture of species (G. intraradices, Glomus mosseae, and Glomus etunicatum) at the acclimation stage and were grown for 6 weeks before transplantation in the field. We found that AM fungi can impact on plant productivity in a soil classified as excessively rich in P. Inoculated mother plants produced about 25% fewer daughter plants than the control in Chambly (P=0.03), and Glooscap produced about 50% more (P=0.008) daughter plants when inoculated with G. intraradices, while the productivity of other cultivars was not significantly decreased. Daughter plant shoot mass was not affected by treatments, but their roots had lower, higher, or similar mass, depending on the cultivar–inoculum combination. Root mass was unrelated to plant number. The average level of AM colonization of daughter plants produced by noninoculated mother plants did not exceed 2%, whereas plants produced from inoculated mothers had over 10% of their root length colonized 7 weeks after transplantation of mother plants and ∼6% after 14 weeks (harvest), suggesting that the AM fungi brought into the field by inoculated mother plants had established and spread up to the daughter plants. The host or nonhost nature of the crop species preceding strawberry plant production (barley or buckwheat) had no effect on soil mycorrhizal potential, on mother plant productivity, or on daughter plant mycorrhizal development. Thus, in soil excessively rich in P, inoculation may be the only option for management of the symbiosis.  相似文献   

2.
Summary Trichoderma harzianum preparations was used in two successive field experiments in commercial strawberry nurseries and fruiting fields. Disease severity ofRhizoctonia solani in daughter plants was reduced by 18–46 % in the treated nursery plots. Infestation of nursery soil with the pathogen, as tested by planting beans in soil samples was reduced by the Trichoderma treatment by up to 92% as compared to the untreated control. A rapid decline of the disease was observed in soil fromT. harzianum treated plots, successively planted with bean seedlings. More isolates ofTrichoderma sp. antagonistic toR. solani, were found in the infested field as compared to the non infested one.Trichoderma harzianum treated plants, transferred to the commercial field gave a 21–37% increase in early yield of strawberries. A combined treatment in the nursery and in the fruiting field resulted in a 20% yield increase as compared to control plots.  相似文献   

3.
Selection of bacterial wilt-resistant tomato through tissue culture   总被引:6,自引:0,他引:6  
Bacterial wilt-resistant plants were obtained using a tomato tissue culture system. A virulent strain ofPseudomonas solanacearum secreted some toxic substances into the culture medium. Leaf explant-derived callus tissues which were resistant to these toxic substances in the culture filtrate were selectedin vitro and regenerated into plants. These plants expressed bacterial wilt resistance at the early infection stage to suppress or delay the growth of the inoculated bacteria. On the other hand, complete resistance was obtained in self-pollinated progeny of regenerants derived from non-selected callus tissues. These plants showed a high resistance when inoculated with this strain, and were also resistant when planted in a field infested with a different strain of the pathogen.  相似文献   

4.
Cell suspensions derived from immature leaves of the groundnut (Arachis hypogaea L.) were cultured in the presence and absence ofCercosporidium personatum pathotoxic culture filtrates. Cell viability and reactions of cell lines were determined after exposure to various concentrations (25–100%, v/v) of the filtrates. Cell lines have been selected for resistance to the toxin(s) produced byC. personatum. Selected cell lines were used for plant regeneration on regeneration media containingC. personatum culture filtrates. Plant regeneration frequency was found to be low in long-term cultures, whereas it was high in short-term cultures. The selfed progeny of the plants regenerated from the resistant cell lines showed resistance to the pathogen in the field. Six out of 82 plants exhibited enhanced resistance in the R2 generation. The culture filtrate stimulated callus proliferation as well as plant regeneration at lower concentrations, a response that could prove to be very useful for obtaining disease resistant plants throughin vitro selection.  相似文献   

5.
Ten cultivars and breeding lines from two species of alfalfa (Medicago media and M. sativa) were screened for their ability to produce embryos and plantlets from the root and hypocotyl under three different tissue culture protocols. The three protocols differed in basal salt composition, vitamins, hormones and cytokinin additions. That protocol having a high 2–4,D low cytokinin induction step gave the highest percentage of embryogenic calli in some cultivars and lines. M. media cultivars and breeding lines had a high percentage of embryoid formation. M. sativa cultivars gave no embryoid formation. Two M. media breeding lines (Br1 and Le1), which were intermediate in the percentage of embryogenic calli formed from explants, had the highest number of regenerated plants established in soil. The creeping rooted M. media cultivar Heinrichs produced the highest percentage of embryogenic calli from explants but most of these embryoids were abnormal and failed to grow in soil or vermiculite. Accordingly, successful regeneration is directly related to the quality and quantity of the embryoids produced. Respectively: Biotechnology Department, Alberta Research Council, Agriculture Canada, Beaverlodge, Alberta, and University of Alberta, Edmonton, Alberta, Canada  相似文献   

6.
Several studies were carried out to investigate the soil microbial components involved in suppressing strawberry black rot root which occurs throughout the Italian strawberry growing region. Quantitative and qualitative evaluation of fungi involved in black root rot were combined with several soil microbial parameters involved in soil suppressiveness towards black root rot agents. The first survey, carried out in an intensively cultivated area of northern Italy, identified Rhizoctonia spp. as the main root pathogen together with several typical weak pathogens belonging to the well‐known black rot root complex of strawberry crop: Cylindrocarpondestructans, Fusarium oxysporum, F. solani, Pestalotia longiseta and others. The root colonisation frequency of strawberry plants increased strongly from autumn to spring at harvesting stage. Rhizoctonia spp. were the only pathogens which followed the rising trend of root colonisation with relative frequency; all the weak pathogens of strawberry black root rot complex did not vary their frequency. Only non‐pathogenic fungi decreased from autumn to spring when at least 60% of colonising fungi were represented by Rhizoctonia. These data suggested that the late vegetative stage was the best time to record the soil inoculum of root rot agents in strawberry using root infection frequency as a parameter of soil health. A further study was performed in two fields, chosen for their common soil texture and pH, but with significant differences in previous soil management: one (ALSIA) had been subjected to strawberry monoculture without organic input for several years; the other (CIF) has been managed according to a 4‐year crop rotation and high organic input. In this study Pythium artificially inoculated was adopted as an indicator for the behaviour of saprophytically living pathogens in bulk soil. Pythium showed a sharp, different response after inoculation in bulk soil from the two soil systems evaluated. Pythium was suppressed only in the CIF field where the highest levels of total fungi and fluorescent bacteria and highest variability were observed. The suppressiveness conditions towards Pythium, observed in the CIF and absent in the ALSIA field, corresponded with the root infection frequency recorded at the late vegetative stage on strawberry plants grown in the two fields: strawberry plants from the CIF field showed lower root colonisation frequency and higher variability than that recorded on those coming from the ALSIA field.  相似文献   

7.
Abstract

Isolates of Pseudomonas spp. collected from the rhizosphere of sugarcane and cane stalks were screened for their antagonistic activity against Colletotrichum falcatum causing red rot disease in sugarcane. Talc formulations of the selected Pseudomonas spp. isolates improved the sugarcane vegetative sett germination and sugarcane growth under field conditions. Optimal talc formulations were assessed for their effect on induction of systemic resistance against the pathogen in the canes under artificial inoculation. All the four isolates CHAO, EP1, KKM1 and VPT4 were effective in inducing systemic resistance against C. falcatum in two seasons. In other studies, the bacterial formulations were assessed to induce resistance in sugarcane in a sick plot situation. In pathogen-infested soil the isolates KKM1 and CHAO suppressed the red rot disease development in susceptible sugarcane cultivar. Pseudomonas strains also protected sugarcane in a disease-endemic location. Pseudomonas spp treatment substantially improved the cane juice quality parameters affected by the pathogen infection. Standardization of talc formulations and application methods in the field offers potential for large-scale application of biocontrol formulations for the management of red rot disease in sugarcane growing regions.  相似文献   

8.
Plants have been regenerated from embryogenic callus cultures of two varieties of Papaver bracteatum and successfully transplanted to soil. Regeneration occurred in good yield, around 40 plants to soil within 5 months per 0.4g piece of original callus. Thebaine concentrations comparable to those in seed-grown plants were obtained in callus-derived plants. It is suggested that there is potential for mass micropropagation of P. bracteatum, which may be useful in developing agriculturally-improved lines.Abbreviations MS Murashige and Skoog (1962) basal medium  相似文献   

9.
Protoplast fusion of Nicotiana tabacum (B6S3) crown gall cells and Atropa belladonna leaf mesophyll cells was carried out. Hybrids were selected for their capacity to grow on hormone-free media and to green in light. Shoots incapable of rhizogenesis were regenerated on the same media and grafted onto normal plants of different species. 57 hybrid cell lines differing in their genetic constitution were produced. Analysis of hybrid lines involved the determination of the lysopine dehydrogenase (LpDH) activity and the molecular forms of esterase and amylase, a restriction analysis of chloroplast DNA and a cytogenetic study.Abbreviations LS-H Linsmaier and Skoog (1965) hormone-free medium - LpDH lysopine dehydrogenase  相似文献   

10.
Brassica napus L.(cv Topas) plants tolerant to chlorsulfuron (CS) were isolated after selection experiments utilizing microspores and haploid protoplasts. The first microspore-derived plant (M-37,) was CS tolerant, haploid and sterile. Normal plant morphology and fertility was restored after colchicine doubling. A CS tolerant plant was also selected from protoplasts (P-26) isolated from microspore-derived embryo tissue and grown on medium containing CS. P-26 was aneuploid, CS tolerant and had very low fertility. The two selected lines produced selfed progeny which were tolerant to from 10–100 times the CS levels of the corresponding Topas plants. Microspores and protoplasts derived from the selfed plants were also CS tolerant. The segregation pattern for CS tolerance from reciprocally crossed progeny of M-37 and Topas was consistent with a semi-dominant nuclear mode of inheritance. Biochemical analysis of the two mutants indicated that the microspore-derived mutant and F1 crosses contained an altered acetohydroxyacid synthase (AHAS) enzyme, while the AHAS activity of the protoplast mutant was similar to Topas. Selfed seed from the M-37 plants have provided tolerance to CS in both greenhouse and field tests. S1 plants from a second microspore selected mutant (M-42) have tolerated 30 g/ha of CS in greenhouse tests. The two single-celled selection systems are discussed and the microspore selection system highlighted as a new method for in vitro selection.  相似文献   

11.
In a previous report, it was described that strawberry plants pre-treated with an avirulent isolate of Colletotrichum fragariae (M23) acquired resistance to a virulent isolate of Colletotrichum acutatum (M11) causing anthracnose. In this report we present evidence that the eliciting activity can be found not only in conidial extracts but in culture supernatants of the avirulent pathogen as well. Plants of the cv. Pájaro treated with the culture filtrate (CF) derived from M23, 3 days prior to the inoculation with M11 showed significantly reduced disease severity as compared to control plants and the disease was completely suppressed when plants were pre-treated 7 days before the challenge inoculation with M11. The same effect was achieved when a single leaf was sprayed with CF, suggesting that the resistance acquired is systemic. Control treatments showed that none of the active extracts inhibited the growth of the virulent pathogen, indicating that the protection effect was due to the induction of a defense response. The latter was confirmed by the accumulation of reactive oxygen species (e.g. hydrogen peroxide, superoxide anion) and the deposition of lignin and callose, usually associated to plant defense, after the CF treatment. Experiments carried out with other strawberry cultivars treated with CF showed that also protected them against different virulent isolates, suggesting that the response observed is cultivar-nonspecific. These outcomes indicate that the protection against anthracnose in strawberry involves a phenomenon of induced resistance (IR) by action of defense-eliciting molecules produced by M23.  相似文献   

12.
Maize rough dwarf disease (MRDD), caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV), the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.  相似文献   

13.
Somatic embryos and plants were produced from cultured inflorescence and leaf segments of Triticum aestivum X Leymus anaustus F1 hybrids and the parental lines. Inflorescences showed a better capacity for somatic embryogenesis and plant regeneration than leaves. Leymus anaustus produced the highest number of embryogenic calli, while the hybrids were intermediate between this species and Triticum aestivum. Presence of 2,4-D was shown to be essential for induction and maintenance of somatic embryogenesis. Addition of five amino acids (glutamine, proline, asparagine, aspartic acid and glutamic acid) did not have any marked effect when they were used in the callus induction medium. The regenerated plants had the same morphology as the original plants. No cytological modification was observed in the examined plants.  相似文献   

14.
A method is presented for rearing large colonies of viruliferous Sogatodes oryzicola, vector of the rice hoja blanca virus (RHBV). These colonies were used for field screening up to 10 000 rice breeding lines per season for resistance to RHBV. Uniform infection of check varieties in the field indicated that the method was adequate. Field release of vectors when plants were 14 days old resulted in satisfactory disease incidence, after 21 days, to distinguish lines segregating for resistance from lines uniformly resistant or susceptible. Various sources of resistance identified earlier continued to be resistant under the screening conditions. Progeny of lines identified as non-segregating resistant continued as non-segregating resistant. Resistant plants from lines segregating for resistance produced progeny lines that were segregating and non-segregating. Ratios of resistant to susceptible plants in F1 progeny of three-way crosses were consistent with earlier observations that RHBV resistance is a dominant character. The susceptibility of the commercial checks indicates that rice production in RHBV areas of tropical Latin America continues to be at risk from the virus. Virus-resistant commercial cultivars resulting from this method should be available in 2 years.  相似文献   

15.
Abstract

Grey mould caused by Botrytis cinerea is a devastating disease that results in extensive yield losses to strawberry. Bacillus brevis (Brevibacillus brevis) and Bacillus polymyxa (Paenibacillus polymyxa), which showed strong antifungal activity against B. cinerea, were isolated from the phyllosphere of strawberry plants. The advantage of using these bacteria is that the biochemistry and physiology of production of antibiotic peptides antimicrobial substances is well documented. A study was conducted to assess the activity of both Bacilli and their antibiotic peptides produced against B. cinerea in strawberry plants in vitro and in vivo. In vitro bioassay, both Bacilli have strongly inhibited pathogen germination, growth and extra-cellular enzyme production. Bacillus brevis was generally the most effective in reducing Botrytis growth. Gramicidin S and polymyxin B peptide antibiotics were extracted from culture filtrate of B. brevis and B. polymyxa, respectively, purified by silica thin chromatography and identified by high performance liquid chromatography. Germination, growth rate and production of extra-cellular enzymes were more sensitive to both antibiotics. Gramicidin S was the most active against B. cinerea with a minimal inhibitory concentration of 15 μmol/l. Polymyxin B also showed activity against B. cinerea at 25 μmol/l. Under controlled conditions (18 – 22°C, 90% relative humidity and 12 h photoperiod), strawberry plants were sprayed with pathogens (105 spores/ml), antagonists (from 105 to 108 cells/ml) and antibiotic peptides (0 – 30 μmol/l) for reducing grey mould. Disease incidence was decreased in the presence of B. brevis. Both antibiotic peptides inhibited Botrytis growth that was observed by scanning electron microscopy. The plant leaves adsorbed significant amounts of antibiotics which reached from 46.1 to 67.5% of the original solution. Under natural field conditions, these biocontrol and antibiotic peptides at different concentrations were evaluated in 2003/2004 and 2004/2005 seasons against Botrytis grey mould. Treating plants with B. brevis exhibited a significant high activity against the development of Botrytis disease on strawberry. Gramicidin S showed a strong potential in reducing disease incidence, followed by polymyxin B, and acted as a fungicide to the pathogen growth. Inhibition of B. cinerea by both Bacilli was similar to equivalent levels of their antibiotics produced. In addition, these treatments significantly reduced the development of Botrytis and increased fruit yield. It can be suggested that B. brevis and B. polymyxa may be considered as potential biocontrol agents against Botrytis grey mould on strawberry based on the production of antifungal peptides. Therefore, gramicidin S and polymyxin B products are considered as biocontrol agents and may play a significant role in the future for practical applications in strawberry management systems.  相似文献   

16.
A technique was developed for assessing the saprophytic activity of Verticillium dahliae, using a strawberry root extract medium. The germination of conidia and microsclerotia, and mycelial growth in soil, was inhibited by the addition of chitin, laminarin, wheat straw and oven-dried green clover as soil amendments. A significant decrease in the number of viable propagules of the pathogen counted from soil, and in disease severity, was obtained with chitin and laminarin. More bacteria and actinomycetes were recorded from the rhizosphere of plants grown in chitin-amended soil than from those in natural soil.  相似文献   

17.
Callus cultures derived from leaf segments of chrysanthemum cultivar ‘Snow Ball’ which was susceptible to Septoria obesa were successfully used for in vitro selection for resistance to this pathogenic fungus. Resistant cell lines were selected by culturing callus on growth medium containing various concentrations of S. obesa filtrate. Resistant calluses obtained after two cycles (30 d each cycle) of selection were used for plant regeneration. About 30% of the plants regenerated from the resistant calluses and 70–80% of the plants raised from cuttings had acquired considerable resistance against the pathogen in the field. No phenotypic variation was observed in the selected regenerates.  相似文献   

18.

Background and aims

Strawberry (Fragaria x ananassa) is a high-value crop worldwide. Fusarium oxysporum f. sp. fragariae causes rapid wilting and death of strawberry plants and severe economic losses worldwide. To date, no studies have been conducted to determine colonisation of either susceptible or resistant strawberry plants by F. oxysporum f. sp. fragariae, or whether plant colonisation by F. oxysporum f. sp. fragariae differs between susceptible and resistant cultivars.

Methods

Colonisation of strawberry plants by a pathogenic isolate of F. oxysporum f. sp. fragariae was examined both on the root surface and within root tissue of one resistant cv. Festival and one susceptible cv. Camarosa using light and scanning electron microscopy from 4?h to 7?d post inoculation (pi).

Results

Resistant cv. Festival significantly impeded the spore germination and penetration from 4 to 12 hpi and subsequent growth and colonisation by this pathogen until 7 dpi compared with susceptible cv. Camarosa. At 7 dpi, fungal colonisation in resistant cv. Festival remained mainly confined to the epidermal layer of the root, while in susceptible cv. Camarosa, hyphae not only had heavily colonised the cortical tissue throughout but had also colonised vascular tissues.

Conclusions

This study demonstrates for the first time that resistance of a strawberry cultivar to F. oxysporum f. sp. fragariae is a result of impedance of pathogen growth and colonisation both on the plant surface and within host tissues. Resistance mechanisms identified in this study will be of high value for breeding programmes in developing new disease-resistant cultivars to manage this serious strawberry disorder.  相似文献   

19.
Pythium and Phytophthora species are associated with damping-off diseases in vegetable nurseries and reduce seedling stand and yield. In this study, bacterial isolates were selected on the basis of in vitro antagonism potential to inhibit mycelial growth of damping-off pathogens along with plant growth properties for field assessment in wet and winter seasons. We demonstrate efficacy of bacterial isolates to protect chile and tomato plants under natural vegetable nursery and artificially created pathogen-infested (Pythium and Phytophthora spp.) nursery conditions. After 21 days of sowing, chile and tomato plants were harvested and analysed for peroxidase and phenylalanine ammonia-lyase activities. Pseudomonas sp. strains FQP PB-3, FQA PB-3 and GRP3 were most effective in increasing shoot length (P > 0.05%) in both artificial and natural field sites. For example, Pseudomonas sp. FQA PB-3 treatment increased shoot length by 40% in the artificial Pythium 4746 infested nursery site in chile plants in the wet season. The bacterial treatments significantly increased the activity of peroxidase and phenylalanine ammonia-lyase in chile and tomato plant tissues, which are well known as indicators of an active lignification process. Thus, we conclude that treatment with potential bacterial plant growth promoting agents help plants against pathogen invasion by modulating plant peroxidase and phenylalanine ammonia-lyase activities.  相似文献   

20.
Mulching of soil beds of strawberry fields is usually done with polyethylene film in southern Minas Gerais state, Brazil. This material is relatively expensive and difficult to discard after use. In some countries, mulching is done with the use of organic material that could have an advantage over the use of plastic for its easier degradation after use, and for favoring edaphic beneficial organisms. Predatory mites (especially Gamasina, Mesostigmata) may be abundant in the soil and could conceivably move to the soil surface and onto the short-growing strawberry plants at night, helping in the control or pest arthropods. The two-spotted spider mite, Tetranychus urticae Koch, is considered an important strawberry pest in that region, where the fungus Neozygites floridana (Weiser and Muma) has been found to infect it. Different mulching types could affect the incidence of this pathogen. Dehydrated coffee husk and pulp (DCHP) is a byproduct readily available in southern Minas Gerais, where could be used as organic mulching in strawberry beds. The temporary contact of that material with the soil of a patch of natural vegetation could facilitate its colonization by edaphic predatory mites helpful in the control of strawberry pests. The objective of this work was to study the effect of mulching type on the population dynamics of the two-spotted spider mite, associate mites and N. floridana, in a greenhouse and in the field. The use of DCHP increased the number of edaphic Gamasina on strawberry plants—Proctolaelaps pygmaeus (Müller) (Melicharidae) and Blattisocius dentriticus (Berlese) (Blattisociidae) were observed on strawberry leaflets, mainly in nocturnal samplings, indicating their possible daily migration from soil to plants. Lower levels of two-spotted spider mite occurred on plants from pots or soil beds mulched with DCHP instead of polyethylene film, possibly because of the slightly higher levels of mites of the family Phytoseiidae and infection by N. floridana. Adding DCHP onto the floor of natural vegetation did not result in higher diversity or levels of gamasine mites on DCHP. Complementary studies should be conducted to find ways to increase diversity and density of those organisms in strawberry beds, in an attempt to improve biological control of strawberry pests. The decision to use DCHP for mulching should also take into account other factors such as strawberry yield, costs and efficiency of weed management, to be evaluated in subsequent studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号