首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
Li W  Ying X  Guo Y  Yu Z  Zhou X  Deng Z  Kieser H  Chater KF  Tao M 《Journal of bacteriology》2006,188(24):8368-8375
SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification of the open reading frame SCO5582 as nsdA, a gene negatively affecting Streptomyces differentiation. The disruption of chromosomal nsdA caused the overproduction of spores and of three of four known S. coelicolor antibiotics of quite different chemical types. In at least one case (that of actinorhodin), this was correlated with premature expression of a pathway-specific regulatory gene (actII-orf4), implying that nsdA in the wild-type strain indirectly repressed the expression of the actinorhodin biosynthesis cluster. nsdA expression was up-regulated upon aerial mycelium initiation and was strongest in the aerial mycelium. NsdA has DUF921, a Streptomyces protein domain of unknown function and a conserved SXR site. A site-directed mutation (S458A) in this site in NsdA abolished its function. Blast searching showed that NsdA homologues are present in some Streptomyces genomes. Outside of streptomycetes, NsdA-like proteins have been found in several actinomycetes. The disruption of the nsdA-like gene SCO4114 had no obvious phenotypic effects on S. coelicolor. The nsdA orthologue SAV2652 in S. avermitilis could complement the S. coelicolor nsdA-null mutant phenotype.  相似文献   

4.
A segment of DNA was isolated that complemented several poorly characterised sporulation-defective white-colony mutants of Streptomyces coelicolor A3(2) from an early collection (Hopwood et al., J Gen Microbiol 61: 397–408, 1970). Complementation was attributable to a gene, SCO4543, named whiJ, encoding a likely DNA-binding protein. Surprisingly, although some mutations in whiJ had a white colony phenotype, complete deletion of the wild-type or mutant gene gave a wild-type morphology. The whiJ gene is a member of a large paralogous set of S. coelicolor genes including abaAorfA, which regulates antibiotic production; and genes flanking whiJ are paralogues of other gene classes that are often associated with whiJ-like genes (Gehring et al., Proc Natl Acad Sci USA 97: 9642–9647, 2000). Thus, the small gene SCO4542 encodes a paralogue of the abaAorfD gene product, and SCO4544 encodes a paralogue of a family of likely anti-sigma factors (including the product of abaAorfB). Deletion of SCO4542 resulted in a medium-dependent bald- or white-colony phenotype, which could be completely suppressed by the simultaneous deletion of whiJ. A model is proposed in which WhiJ binds to operator sequences to repress developmental genes, with repression being released by interaction with the WhiJ-associated SCO4542 protein. It is suggested that this activity of SCO4542 protein is prevented by an unknown signal.  相似文献   

5.
6.
7.
8.
A 3.0-kb region involved in lipopolysaccharide biosynthesis in Bradyrhizobium japonicum was sequenced. One complete open reading frame was identified which encodes a polypeptide of 354 amino acid residues with a predicted molecular mass of 38 209 Da. Expression of the protein using a T7 gene expression system revealed a band of similar molecular mass after sodium dodecyl sulfate polyacrylamide gel electrophoresis. A database search against known gene sequences revealed a significant sequence similarity to the rfaF gene cloned from several Gram-negative bacteria. The rfaF gene is known to encode heptosyltransferase II that transfers a second heptose to the inner core of lipopolysaccharide. The cloned B. japonicum open reading frame was able to functionally complement a rfaF mutant of Salmonella typhimurium SL3789. Transformation of this mutant with the B. japonicum gene restored production of an intact lipopolysaccharide and resistance to the hydrophobic antibiotic, novobiocin. An additional open reading frame having a significant sequence similarity to the rfaD gene was found to be divergently oriented to the rfaF gene.  相似文献   

9.
We describe the identification and functional characterization of cdgB (SCO4281), a recently discovered target of BldD, a key regulator of morphological differentiation and antibiotic production in the mycelial bacteria of the genus Streptomyces. cdgB (cyclic dimeric GMP [c-di-GMP] B) encodes a GGDEF-containing protein that has diguanylate cyclase activity in vitro. Consistent with this enzymatic activity, heterologous expression of cdgB in Escherichia coli resulted in increased production of extracellular matrix in colonies and enhanced surface attachment of cells in standing liquid cultures. In Streptomyces coelicolor, both overexpression and deletion of cdgB inhibited aerial-mycelium formation, and overexpression also inhibited production of the antibiotic actinorhodin, implicating c-di-GMP in the regulation of developmental processes in Streptomyces.  相似文献   

10.
11.
The intracellular concentrations of the polypeptides encoded by the two enolase (ENO1 and ENO2) and three glyceraldehyde-3-phosphate dehydrogenase (TDH1, TDH2, and TDH3) genes were coordinately reduced more than 20-fold in a Saccharomyces cerevisiae strain carrying the gcr1-1 mutation. The steady-state concentration of glyceraldehyde-3-phosphate dehydrogenase mRNA was shown to be approximately 50-fold reduced in the mutant strain. Overexpression of enolase and glyceraldehyde-3-phosphate dehydrogenase in strains carrying multiple copies of either ENO1 or TDH3 was reduced more than 50-fold in strains carrying the gcr1-1 mutation. These results demonstrated that the GCR1 gene encodes a trans-acting factor which is required for efficient and coordinate expression of these glycolytic gene families. The GCR1 gene and the gcr1-1 mutant allele were cloned and sequenced. GCR1 encodes a predicted 844-amino-acid polypeptide; the gcr1-1 allele contains a 1-base-pair insertion mutation at codon 304. A null mutant carrying a deletion of 90% of the GCR1 coding sequence and a URA3 gene insertion was constructed by gene replacement. The phenotype of a strain carrying this null mutation was identical to that of the gcr1-1 mutant strain.  相似文献   

12.
13.
H Decker  S Haag 《Journal of bacteriology》1995,177(21):6126-6136
A DNA fragment was cloned as cosmid purd8, which encodes a polyketide synthase involved in the production of the angucycline antibiotic urdamycin from Streptomyces fradiae Tü2717. Deletion of the polyketide synthase genes from the chromosome abolished urdamycin production. In addition, purd8 conferred urdamycin resistance on introduction into Streptomyces lividans TK24. Sequence analysis of 5.7 kb of purd8 revealed six open reading frames transcribed in the same direction. The deduced amino acid sequences of the six open reading frames strongly resemble proteins from known type II polyketide synthase gene clusters: a ketoacyl synthase, a chain length factor, an acyl carrier protein, a ketoreductase, a cyclase, and an oxygenase. Heterologous expression of the urdamycin genes encoding a ketoacyl synthase and a chain length factor in Streptomyces glaucescens tetracenomycin C-nonproducing mutants impaired in either the TcmK ketoacyl synthase or TcmL chain length factor resulted in the production of tetracenomycin C. Heterologous expression of a putative oxygenase gene from the urdamycin gene cluster in S. glaucescens GLA.O caused production of the hybrid antibiotic 6-hydroxy tetracenomycin C.  相似文献   

14.
15.
Open reading frame SCO3571 of Streptomyces coelicolor encodes a protein of the cyclic AMP (cAMP) receptor protein (CRP) superfamily of regulatory proteins. A mutant revealed a dramatic defect in germination, followed by growth delay and earlier sporulation. This phenotype correlates with those of an adenylate cyclase (cya) mutant that cannot synthesize cAMP. This finding suggests that S. coelicolor may use a Cya-cAMP-CRP system to trigger complex physiological processes such as morphogenesis.  相似文献   

16.
17.
18.
By using the moxF gene encoding the large fragment of methanol dehydrogenase as a probe, a downstream linked chromosomal fragment was isolated from a genomic bank of Paracoccus denitrificans. The nucleotide sequence of the fragment was determined and revealed the 3' part of moxF, four additional open reading frames, and the 5' part of a sixth one. The organization and deduced amino acid sequences of the first three frames downstream from moxF were found to be largely homologous to the moxJ, moxG, and moxI gene products of Methylobacterium extorquens AM1. Directly downstream from these three genes, a new mox gene was identified. The gene is designated moxR. By using the suicide vector pGRPd1, the moxJ, moxG, and moxR genes were inactivated by the insertion of a kanamycin resistance gene. Subsequently, suicide vector pRVS1 was used to replace the marker genes in moxJ and moxG for unmarked deletions made in vitro. As a result, the three insertion strains as well as the two unmarked mutant strains were unable to grow on methanol, even in the presence of pyrroloquinoline quinone. Growth on succinate and on methylamine was not affected. In all five mutant strains, synthesis of the large subunit of methanol dehydrogenase and of inducible cytochrome c553i was observed. The moxJ and moxG insertion mutant strains were unable to synthesize both the cytochrome c551i and the small subunit of methanol dehydrogenase, and this lack of synthesis was attended by the loss of methanol dehydrogenase activity. The moxJ deletion mutant strain partly synthesized the latter two proteins, cytochrome c551i. Partial synthesis of the small subunit of methanol dehydrogenase observed with the latter strain was attended by a corresponding extent of methanol dehydrogenase activity. The moxR insertion mutant strain was shown to synthesize cytochrome c551i as well as the large and small subunits of methanol dehydrogenase, but no methanol dehydrogenase activity was observed. The results show that periplasmic cytochrome c551i is the moxG gene product and the natural electron acceptor of methanol dehydrogenase in P. denitrificans. In contrast to earlier suggestions, this cytochrome was found to be different from membrane-bound cytochrome c552. In addition, it is demonstrated that moxI encodes the small subunit of methanol dehydrogenase. It is suggested that MoxJ is involved in the assemblage of active methanol dehydrogenase in the periplasm and, in addition, that MoxR is involved in the regulation of formation of active methanol dehydrogenase.  相似文献   

19.
20.
The 17-kb kps gene cluster encodes proteins necessary for the synthesis, assembly, and translocation of the polysialic acid capsule of Escherichia coli K1. We previously reported that one of these genes, kpsD, encodes a 60-kDa periplasmic protein that is involved in the translocation of the polymer to the cell surface. The nucleotide sequence of the 2.4-kb BamHI-PstI fragment accommodating the kpsD gene was determined. Sequence analysis showed an open reading frame for a 558-amino-acid protein with a typical N-terminal prokaryotic signal sequence corresponding to the first 20 amino acids. KpsD was overexpressed, partially purified, and used to prepare polyclonal antiserum. A chromosomal insertion mutation was generated in the kpsD gene and results in loss of surface expression of the polysialic acid capsule. Immunodiffusion analysis and electron microscopy indicated that polysaccharide accumulates in the periplasmic space of mutant cells. A wild-type copy of kpsD supplied in trans complemented the chromosomal mutation, restoring extracellular expression of the K1 capsule. However, a kpsD deletion derivative (kpsD delta C11), which results in production of a truncated KpsD protein lacking its 11 C-terminal amino acids, was nonfunctional. Western blot (immunoblot) data from cell fractions expressing KpsD delta C11 suggest that the truncated protein was inefficiently exported into the periplasm and localized primarily to the cytoplasmic membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号