首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Wnt/beta-catenin signaling regulates many aspects of early vertebrate development, including patterning of the mesoderm and neurectoderm during gastrulation. In zebrafish, Wnt signaling overcomes basal repression in the prospective caudal neurectoderm by Tcf homologs that act as inhibitors of Wnt target genes. The vertebrate homolog of Drosophila nemo, nemo-like kinase (Nlk), can phosphorylate Tcf/Lef proteins and inhibit the DNA-binding ability of beta-catenin/Tcf complexes, thereby blocking activation of Wnt targets. By contrast, mutations in a C. elegans homolog show that Nlk is required to activate Wnt targets that are constitutively repressed by Tcf. We show that overexpressed zebrafish nlk, in concert with wnt8, can downregulate two tcf3 homologs, tcf3a and tcf3b, that repress Wnt targets during neurectodermal patterning. Inhibition of nlk using morpholino oligos reveals essential roles in regulating ventrolateral mesoderm formation in conjunction with wnt8, and in patterning of the midbrain, possibly functioning with wnt8b. In both instances, nlk appears to function as a positive regulator of Wnt signaling. Additionally, nlk strongly enhances convergent/extension phenotypes associated with wnt11/silberblick, suggesting a role in modulating cell movements as well as cell fate.  相似文献   

4.
Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins.  相似文献   

5.
The zic1 gene is an activator of Wnt signaling   总被引:1,自引:0,他引:1  
The zic1 gene plays an important role in early patterning of the Xenopus neurectoderm. While Zic1 does not act as a neural inducer, it synergizes with the neural inducing factor Noggin to activate expression of posterior neural genes, including the midbrain/hindbrain boundary marker engrailed-2. Since the Drosophila homologue of zic1, odd-paired (opa), regulates expression of the wingless and engrailed genes and since Wnt proteins posteriorize neural tissue in Xenopus, we asked whether Xenopus Zic1 acted through the Wnt pathway. Using Wnt signaling inhibitors, we demonstrate that an active Wnt pathway is required for activation of en-2 expression by zic1. Consistent with this result, Zic1 induces expression of several wnt genes, including wnt1, wnt4 and wnt8b. wnt1 gene expression activates expression of engrailed in various organisms, including Xenopus, as demonstrated here. Together, our data suggest that zic1 is an upstream regulator of several wnt genes and that the regulatory relationships between opa, wingless and engrailed seen in Drosophila are also present in vertebrates.  相似文献   

6.
In Drosophila, the secreted signaling molecule Jelly Belly (Jeb) activates anaplastic lymphoma kinase (Alk), a receptor tyrosine kinase, in multiple developmental and adult contexts. We have shown previously that Jeb and Alk are highly enriched at Drosophila synapses within the CNS neuropil and neuromuscular junction (NMJ) and postulated a conserved intercellular signaling function. At the embryonic and larval NMJ, Jeb is localized in the motor neuron presynaptic terminal whereas Alk is concentrated in the muscle postsynaptic domain surrounding boutons, consistent with anterograde trans‐synaptic signaling. Here, we show that neurotransmission is regulated by Jeb secretion by functional inhibition of Jeb–Alk signaling. Jeb is a novel negative regulator of neuromuscular transmission. Reduction or inhibition of Alk function results in enhanced synaptic transmission. Activation of Alk conversely inhibits synaptic transmission. Restoration of wild‐type postsynaptic Alk expression in Alk partial loss‐of‐function mutants rescues NMJ transmission phenotypes and confirms that postsynaptic Alk regulates NMJ transmission. The effects of impaired Alk signaling on neurotransmission are observed in the absence of associated changes in NMJ structure. Complete removal of Jeb in motor neurons, however, disrupts both presynaptic bouton architecture and postsynaptic differentiation. Nonphysiologic activation of Alk signaling also negatively regulates NMJ growth. Activation of Jeb–Alk signaling triggers the Ras‐MAP kinase cascade in both pre‐ and postsynaptic compartments. These novel roles for Jeb–Alk signaling in the modulation of synaptic function and structure have potential implications for recently reported Alk functions in human addiction, retention of spatial memory, cognitive dysfunction in neurofibromatosis, and pathogenesis of amyotrophic lateral sclerosis. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

7.
Translational repression by Drosophila Pumilio (Pum) protein controls posterior patterning during embryonic development. Here, we show that Pum is an important mediator of synaptic growth and plasticity at the neuromuscular junction (NMJ). Pum is localized to the postsynaptic side of the NMJ in third instar larvae and is also expressed in larval neurons. Neuronal Pum regulates synaptic growth. In its absence, NMJ boutons are larger and fewer in number, while Pum overexpression increases bouton number and decreases bouton size. Postsynaptic Pum negatively regulates expression of the translation factor eIF-4E at the NMJ, and Pum binds selectively to the 3'UTR of eIF-4E mRNA. The GluRIIa glutamate receptor is upregulated in pum mutants. These results, together with genetic epistasis studies, suggest that postsynaptic Pum modulates synaptic function via direct control of eIF-4E expression.  相似文献   

8.
We conducted a large-scale screen for Drosophila mutants that have structural abnormalities of the larval neuromuscular junction (NMJ). We recovered mutations in wishful thinking (wit), a gene that positively regulates synaptic growth. wit encodes a BMP type II receptor. In wit mutant larvae, the size of the NMJs is greatly reduced relative to the size of the muscles. wit NMJs have reduced evoked excitatory junctional potentials, decreased levels of the synaptic cell adhesion molecule Fasciclin II, and synaptic membrane detachment at active zones. Wit is expressed by a subset of neurons, including motoneurons. The NMJ phenotype is specifically rescued by transgenic expression of Wit only in motoneurons. Thus, Wit appears to function as a presynaptic receptor that regulates synaptic size at the Drosophila NMJ.  相似文献   

9.
In contrast to mammals, lower vertebrates have a remarkable capacity to regenerate complex structures damaged by injury or disease. This process, termed epimorphic regeneration, involves progenitor cells created through the reprogramming of differentiated cells or through the activation of resident stem cells. Wnt/beta-catenin signaling regulates progenitor cell fate and proliferation during embryonic development and stem cell function in adults, but its functional involvement in epimorphic regeneration has not been addressed. Using transgenic fish lines, we show that Wnt/beta-catenin signaling is activated in the regenerating zebrafish tail fin and is required for formation and subsequent proliferation of the progenitor cells of the blastema. Wnt/beta-catenin signaling appears to act upstream of FGF signaling, which has recently been found to be essential for fin regeneration. Intriguingly, increased Wnt/beta-catenin signaling is sufficient to augment regeneration, as tail fins regenerate faster in fish heterozygous for a loss-of-function mutation in axin1, a negative regulator of the pathway. Likewise, activation of Wnt/beta-catenin signaling by overexpression of wnt8 increases proliferation of progenitor cells in the regenerating fin. By contrast, overexpression of wnt5b (pipetail) reduces expression of Wnt/beta-catenin target genes, impairs proliferation of progenitors and inhibits fin regeneration. Importantly, fin regeneration is accelerated in wnt5b mutant fish. These data suggest that Wnt/beta-catenin signaling promotes regeneration, whereas a distinct pathway activated by wnt5b acts in a negative-feedback loop to limit regeneration.  相似文献   

10.
11.
Neuropeptide signaling is integral to many aspects of neural communication, particularly modulation of membrane excitability and synaptic transmission. However, neuropeptides have not been clearly implicated in synaptic growth and development. Here, we demonstrate that cholecystokinin-like receptor (CCKLR) and drosulfakinin (DSK), its predicted ligand, are strong positive growth regulators of the Drosophila melanogaster larval neuromuscular junction (NMJ). Mutations of CCKLR or dsk produced severe NMJ undergrowth, whereas overexpression of CCKLR caused overgrowth. Presynaptic expression of CCKLR was necessary and sufficient for regulating NMJ growth. CCKLR and dsk mutants also reduced synaptic function in parallel with decreased NMJ size. Analysis of double mutants revealed that DSK/CCKLR regulation of NMJ growth occurs through the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-cAMP response element binding protein (CREB) pathway. Our results demonstrate a novel role for neuropeptide signaling in synaptic development. Moreover, because the cAMP-PKA-CREB pathway is required for structural synaptic plasticity in learning and memory, DSK/CCKLR signaling may also contribute to these mechanisms.  相似文献   

12.
13.
Wnt genes play important roles in regulating patterning and morphogenesis during vertebrate gastrulation. In zebrafish, slb/wnt11 is required for convergence and extension movements, but not cell fate specification during gastrulation. To determine if other Wnt genes functionally interact with slb/wnt11, we analysed the role of ppt/wnt5 during zebrafish gastrulation. ppt/wnt5 is maternally provided and zygotically expressed at all stages during gastrulation. The analysis of ppt mutant embryos reveals that Ppt/Wnt5 regulates cell elongation and convergent extension movements in posterior regions of the gastrula, while its function in more anterior regions is largely redundant to that of Slb/Wnt11. Frizzled-2 functions downstream of ppt/wnt5, indicating that it might act as a receptor for Ppt/Wnt5 in this process. The characterisation of the role of Ppt/Wnt5 provides insight into the functional diversity of Wnt genes in regulating vertebrate gastrulation movements.  相似文献   

14.
Retrograde signaling plays an important role in synaptic homeostasis, growth, and plasticity. A retrograde signal at the neuromuscular junction (NMJ) of Drosophila controls the homeostasis of neurotransmitter release. Here, we show that this retrograde signal is regulated by the postsynaptic activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Reducing CaMKII activity in muscles enhances the signal and increases neurotransmitter release, while constitutive activation of CaMKII in muscles inhibits the signal and decreases neurotransmitter release. Postsynaptic inhibition of CaMKII increases the number of presynaptic, vesicle-associated T bars at the active zones. Consistently, we show that glutamate receptor mutants also have a higher number of T bars; this increase is suppressed by postsynaptic activation of CaMKII. Furthermore, we demonstrate that presynaptic BMP receptor wishful thinking is required for the retrograde signal to function. Our results indicate that CaMKII plays a key role in the retrograde control of homeostasis of synaptic transmission at the NMJ of Drosophila.  相似文献   

15.
16.
Toll-like receptors (TLRs) are best characterized for their roles in mediating dorsoventral patterning and the innate immune response. However, recent studies indicate that TLRs are also involved in regulating neuronal growth and development. Here, we demonstrate that the TLR Tollo positively regulates growth of the Drosophila melanogaster larval neuromuscular junction (NMJ). Tollo mutants exhibited NMJ undergrowth, whereas increased expression of Tollo led to NMJ overgrowth. Tollo expression in the motoneuron was both necessary and sufficient for regulating NMJ growth. Dominant genetic interactions together with altered levels of phosphorylated c-Jun N-terminal kinase (JNK) and puc-lacZ expression revealed that Tollo signals through the JNK pathway at the NMJ. Genetic interactions also revealed that the neurotrophin Spätzle3 (Spz3) is a likely Tollo ligand. Spz3 expression in muscle and proteolytic activation via the Easter protease was necessary and sufficient to promote NMJ growth. These results demonstrate the existence of a novel neurotrophin signaling pathway that is required for synaptic development in Drosophila.  相似文献   

17.
Regulation of synaptic growth is fundamental to the formation and plasticity of neural circuits. Here, we demonstrate that Nervous wreck (Nwk), a negative regulator of synaptic growth at Drosophila NMJs, interacts functionally and physically with components of the endocytic machinery, including dynamin and Dap160/intersectin, and negatively regulates retrograde BMP growth signaling through a direct interaction with the BMP receptor, thickveins. Synaptic overgrowth in nwk is sensitive to BMP signaling levels, and loss of Nwk facilitates BMP-induced overgrowth. Conversely, Nwk overexpression suppresses BMP-induced synaptic overgrowth. We observe analogous genetic interactions between dap160 and the BMP pathway, confirming that endocytosis regulates BMP signaling at NMJs. Finally, we demonstrate a correlation between synaptic growth and pMAD levels and show that Nwk regulates these levels. We propose that Nwk functions at the interface of endocytosis and BMP signaling to ensure proper synaptic growth by negatively regulating Tkv to set limits on this positive growth signal.  相似文献   

18.
19.
Neuromuscular junction (NMJ) formation requires the highly coordinated communication of several reciprocal signaling processes between motoneurons and their muscle targets. Identification of the early, spatially restricted cues in target recognition at the NMJ is still poorly documented, especially in mammals. Wnt signaling is one of the key pathways regulating synaptic connectivity. Here, we report that Wnt4 contributes to the formation of vertebrate NMJ in vivo. Results from a microarray screen and quantitative RT-PCR demonstrate that Wnt4 expression is regulated during muscle cell differentiation in vitro and muscle development in vivo, being highly expressed when the first synaptic contacts are formed and subsequently downregulated. Analysis of the mouse Wnt4−/− NMJ phenotype reveals profound innervation defects including motor axons overgrowing and bypassing AChR aggregates with 30% of AChR clusters being unapposed by nerve terminals. In addition, loss of Wnt4 function results in a 35% decrease of the number of prepatterned AChR clusters while Wnt4 overexpression in cultured myotubes increases the number of AChR clusters demonstrating that Wnt4 directly affects postsynaptic differentiation. In contrast, muscle structure and the localization of several synaptic proteins including acetylcholinesterase, MuSK and rapsyn are not perturbed in the Wnt4 mutant. Finally, we identify MuSK as a Wnt4 receptor. Wnt4 not only interacts with MuSK ectodomain but also mediates MuSK activation. Taken together our data reveal a new role for Wnt4 in mammalian NMJ formation that could be mediated by MuSK, a key receptor in synaptogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号