首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) may result from the accumulation of amyloid-beta (Abeta) peptides in the brain. The cysteine protease cathepsin B (CatB) is associated with amyloid plaques in AD brains and has been suspected to increase Abeta production. Here, we demonstrate that CatB actually reduces levels of Abeta peptides, especially the aggregation-prone species Abeta1-42, through proteolytic cleavage. Genetic inactivation of CatB in mice with neuronal expression of familial AD-mutant human amyloid precursor protein (hAPP) increased the relative abundance of Abeta1-42, worsening plaque deposition and other AD-related pathologies. Lentivirus-mediated expression of CatB in aged hAPP mice reduced preexisting amyloid deposits, even thioflavin S-positive plaques. Under cell-free conditions, CatB effectively cleaved Abeta1-42, generating C-terminally truncated Abeta peptides that are less amyloidogenic. Thus, CatB likely fulfills antiamyloidogenic and neuroprotective functions. Insufficient CatB activity might promote AD; increasing CatB activity could counteract the neuropathology of this disease.  相似文献   

2.
Adult mouse astrocytes degrade amyloid-beta in vitro and in situ   总被引:17,自引:0,他引:17  
Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by excessive deposition of amyloid-beta (Abeta) peptides in the brain. One of the earliest neuropathological changes in AD is the accumulation of astrocytes at sites of Abeta deposition, but the cause or significance of this cellular response is unclear. Here we show that cultured adult mouse astrocytes migrate in response to monocyte chemoattractant protein-1 (MCP-1), a chemokine present in AD lesions, and cease migration upon interaction with immobilized Abeta(1-42). We also show that astrocytes bind and degrade Abeta(1-42). Astrocytes plated on Abeta-laden brain sections from a mouse model of AD associate with the Abeta deposits and reduce overall Abeta levels in these sections. Our results suggest a novel mechanism for the accumulation of astrocytes around Abeta deposits, indicate a direct role for astrocytes in degradation of Abeta and implicate deficits in astroglial clearance of Abeta in the pathogenesis of AD. Treatments that increase removal of Abeta by astrocytes may therefore be a critical mechanism to reduce the neurodegeneration associated with AD.  相似文献   

3.
The subcellular localization of organelles, mRNAs and proteins is particularly challenging in neurons. Owing to their extended morphology, with axons in humans exceeding a meter in length, in addition to which they are not renewed but persist for the entire lifespan, it is no surprise that neurons are highly vulnerable to any perturbation of their sophisticated transport machinery. There is emerging evidence that impaired transport is not only causative for a range of motor disorders, but possibly also for Alzheimer's disease (AD) and related neurodegenerative disorders. Support for this hypothesis comes from transgenic animal models. Overexpression of human tau and amyloid precursor protein (APP) in mice and flies models the key hallmark histopathological characteristics of AD, such as somatodendritic accumulation of phosphorylated forms of tau and beta-amyloid (Abeta) peptide-containing amyloid plaques, as well as axonopathy. The latter has also been demonstrated in mutant mice with altered levels of Alzheimer-associated genes, such as presenilin (PS). In Abeta-producing APP transgenic mice, axonopathy was observed before the onset of plaque formation and tau hyperphosphorylation. In human AD brain, an axonopathy was revealed for early but not late Braak stages. The overall picture is that key players in AD, such as tau, APP and PS, perturb axonal transport early on in AD, causing impaired synaptic plasticity and reducing survival rates. It will be challenging to determine the molecular mechanisms of these different axonopathies, as this might assist in the development of new therapeutic strategies.  相似文献   

4.
Exogenous induction of cerebral beta-amyloidosis in betaAPP-transgenic mice   总被引:3,自引:0,他引:3  
A key commonality of most age-related neurodegenerative diseases is the accumulation of aggregation-prone proteins in the brain. Except for the prionoses, the initiation and propagation of these proteopathies in vivo remains poorly understood. In a previous study, we found that the deposition of the amyloidogenic peptide Abeta can be induced by injection of dilute extracts of Alzheimeric neocortex into the brains of Tg2576 transgenic mice overexpressing the human beta-amyloid precursor protein. The present study was undertaken to assess the pathology after long-term (12 months) incubation, and to clarify the distinctive anatomical distribution of seeded Abeta-immunoreactivity. All mice were injected at 3 months of age; 5 months later, as expected, Abeta deposits were concentrated mostly in the injected hemisphere. After 12 months, abundant, transgene-derived Abeta deposits were present bilaterally in the forebrain, but plaque load was still clearly greater in the extract-injected hemisphere. There was also evidence of tau hyperphosphorylation in axons of the corpus callosum that had been injured by the injection, most prominently in transgenic mice, but also, to a lesser degree, in non-transgenic mice. Five months following injection of AD-extract, an isolated cluster of Abeta-immunoreactive microglia was sometimes evident in the ipsilateral entorhinal cortex; the strong innervation of the hippocampus by entorhinal cortical neurons suggests the possible spread of seeded pathology from the injection site via neuronal transport mechanisms. Finally, using India Ink to map the local dispersion of injectate, we found that Abeta induction is especially potent in places where the injectate is sequestered. The AD-seeding model can illuminate the emergence and spread of cerebral beta-amyloidosis and tau hyperphosphorylation, and thus could enhance our understanding of AD and its pathogenic commonalties with other cerebral proteopathies.  相似文献   

5.
Hong DJ  Pei AL  Sun FY  Zhu CQ 《生理学报》2003,55(2):142-146
近年来研究发现,阿尔茨海默病(Alzheimer′s disease,AD)病人脑内神经元细胞周期相关蛋白的异常表达与AD相关病理改变存在关联。为探讨β-淀粉样蛋白(β—amyloid,Aβ)的毒性作用能否导致成年脑神经元表达细胞周期相关蛋白,以及细胞周期相关蛋白表达与神经损伤之间的关系,我们运用免疫组化、积分光密度分析等方法对Aβ25-35多肽片段单侧杏仁核注射的大鼠脑进行了研究。结果显示,Aβ25-35注射的大鼠脑内除了有与神经纤维缠结相关的磷酸化tau蛋白和凋亡相关蛋白Bax蛋白水平增加外,术后7d细胞周期相关蛋白cyclin A和cyclin B1蛋白在神经元内异常表达,但术后21d时cyclin A的表达有所降低,而cyclin B1在脑内神经元中已检测不到;免疫荧光双标结果显示Aβ25-35注射后7d的大鼠脑内有较多的cyclin B1和Bax、cyclin B1和磷酸化tau蛋白共存的神经元,而Bax与磷酸化tau蛋白阳性信号很少共存在同一细胞上。以上结果提示,Aβ可导致成年脑神经元表达细胞周期相关蛋白,这些神经元可能会通过与Bax相关的凋亡途径死亡,或首先导致与AD神经纤维缠结相关的tau蛋白磷酸化。  相似文献   

6.
Down-regulation of protein phosphatase 2A (PP2A) is thought to play a critical role in tau hyperphosphorylation in Alzheimer's disease (AD). In vitro phosphorylation of PP2A catalytic subunit at Y307 efficiently inactivates PP2A. A specific antibody against phosphorylated (p) PP2A (Y307) (PP2Ac-Yp307) was used to investigate possible PP2A down-regulation by known pathophysiological changes associated with AD, such as Abeta accumulation and oestrogen deficiency. Immunohistochemistry and immunofluorescence confocal microscopy showed an aberrant accumulation of PP2Ac-Yp307 in neurons that bear pretangles or tangles in the susceptible brain regions, such as the entorhinal cortical cortex and the hippocampus. Experimentally, increased PP2Ac-Yp307 was observed in mouse N2a neuroblastoma cells that stably express the human amyloid precursor protein with Swedish mutation (APPswe) compared with wild-type, and in the brains of transgenic APPswe/ presenilin (PS1, A246E) mice, which corresponded to the increased tau phosphorylation. Treating N2a cells with Abeta25-35 mimicked the changes of PP2Ac-Yp307 and tau phosphorylation in N2a APPswe cells. Knockout of oestrogen receptor (ER) alpha or ERbeta gave similar changes of PP2Ac-Yp307 level and tau phosphorylation in the mouse brain. Taken together, these findings suggest that increased PP2A phosphorylation (Y307) can be mediated by Abeta deposition or oestrogen deficiency in the AD brain, and consequently compromise dephosphorylation of abnormally hyperphosphorylated tau, and lead to neurofibrillary tangle formation.  相似文献   

7.
To better understand amyloid-beta (Abeta) metabolism in vivo, we assessed the concentration of Abeta in the CSF and plasma of APP(V717F) (PDAPP) transgenic mice, a model that develops age-dependent Alzheimer's disease (AD)-like pathology. In 3-month-old mice, prior to the development of Abeta deposition in the brain, there was a highly significant correlation between Abeta levels in CSF and plasma. In 9-month-old-mice, an age at which some but not all mice have developed Abeta deposition, there was also a significant correlation between CSF and plasma Abeta; however, the correlation was not as strong as that present in young mice. In further exploring CSF and plasma Abeta levels in 9-month-old mice, levels of CSF Abeta were found to correlate highly with Abeta burden. Analysis of the CSF: plasma Abeta ratio revealed a selective two-fold increase in plaque versus non-plaque bearing mice, strongly suggesting a plaque-mediated sequestration of soluble Abeta in brain. Interestingly, in 9-month-old mice, a significant correlation between CNS and plasma Abeta was limited to mice lacking Abeta deposition. These findings suggest that there is a dynamic equilibrium between CNS and plasma Abeta, and that plaques create a new equilibrium because soluble CNS Abeta not only enters the plasma but also deposits onto amyloid plaques in the CNS.  相似文献   

8.
Mutations in the presenilin 1 (PS1) gene are responsible for the early onset of familial Alzheimer disease (FAD). Accumulating evidence shows that PS1 is involved in gamma-secretase activity and that FAD-associated mutations of PS1 commonly accelerate Abeta(1-42) production, which causes Alzheimer disease (AD). Recent studies suggest, however, that PS1 is involved not only in Abeta production but also in other processes that lead to neurodegeneration. To better understand the causes of neurodegeneration linked to the PS1 mutation, we analyzed the development of tau pathology, another key feature of AD, in PS1 knock-in mice. Hippocampal samples taken from FAD mutant (I213T) PS1 knock-in mice contained hyperphosphorylated tau that reacted with various phosphodependent tau antibodies and with Alz50, which recognizes the conformational change of PHF tau. Some neurons exhibited Congo red birefringence and Thioflavin T reactivity, both of which are histological criteria for neurofibrillary tangles (NFTs). Biochemical analysis of the samples revealed SDS-insoluble tau, which under electron microscopy examination, resembled tau fibrils. These results indicate that our mutant PS1 knock-in mice exhibited NFT-like tau pathology in the absence of Abeta deposition, suggesting that PS1 mutations contribute to the onset of AD not only by enhancing Abeta(1-42) production but by also accelerating the formation and accumulation of filamentous tau.  相似文献   

9.
We previously showed that NDP52 (also known as calcoco2) plays a role as an autophagic receptor for phosphorylated tau facilitating its clearance via autophagy. Here, we examined the expression and association of NDP52 with autophagy-regulated gene (ATG) proteins including LC3, as well as phosphorylated tau and amyloid-beta (Aβ) in brains of an AD mouse model. NDP52 was expressed not only in neurons, but also in microglia and astrocytes. NDP52 co-localized with ATGs and phosphorylated tau as expected since it functions as an autophagy receptor for phosphorylated tau in brain. Compared to wild-type mice, the number of autophagic vesicles (AVs) containing NDP52 in both cortex and hippocampal regions was significantly greater in AD model mice. Moreover, the protein levels of NDP52 and phosphorylated tau together with LC3-II were also significantly increased in AD model mice, reflecting autophagy impairment in the AD mouse model. By contrast, a significant change in p62/SQSTM1 level was not observed in this AD mouse model. NDP52 was also associated with intracellular Aβ, but not with the extracellular Aβ of amyloid plaques. We conclude that NDP52 is a key autophagy receptor for phosphorylated tau in brain. Further our data provide clear evidence for autophagy impairment in brains of AD mouse model, and thus strategies that result in enhancement of autophagic flux in AD are likely to be beneficial.  相似文献   

10.
11.
Temporal cortical sections from postmortem brains of individuals without any dementing condition and with different degrees of severity of Alzheimer's disease (AD) evaluated by the Clinical Dementia Rating scale (CDR 0-CDR 3) were analyzed using immunohistochemical procedures. To demonstrate the amyloid-beta-peptide (Abeta) deposition and the neurofibrillary pathology, two monoclonal antibodies were used, a human CERAD Abeta (10D5) antibody raised against the N-terminal region of the Abeta-peptide, and an antibody raised against paired helical filaments (PHF-1). The neuron cell bodies and the glial cells were also recognized by two polyclonal antibodies raised, respectively, against the protein gene peptide (PGP 9.5) and glial fibrillary acidic protein (GFAP). Directly related to severity of AD, progressive deposits of Abeta-peptide were found within cortical pyramidal-like neurons and forming senile plaques. Ultrastructurally, Abeta-peptide deposits were related to neuronal intracytoplasmic organelles, such as the ER, the mitochondria, the Nissl bodies and lipofuscin. We have also found that the intracellular deposition of the Abeta peptide is a neuropathological finding prior to the appearance of PHF-immunoreactive structures. We suggest that the intracellular Abeta deposition in cortical pyramidal neurons is a first neurodegenerative event in AD development and that it is involved in cell dysfunction, neuronal death, and plaque formation.  相似文献   

12.
N-terminally truncated amyloid-beta (Abeta) peptides are present in early and diffuse plaques of individuals with Alzheimer's disease (AD), are overproduced in early onset familial AD and their amount seems to be directly correlated to the severity and the progression of the disease in AD and Down's syndrome (DS). The pyroglutamate-containing isoforms at position 3 [AbetaN3(pE)-40/42] represent the prominent form among the N-truncated species, and may account for more than 50% of Abeta accumulated in plaques. In this study, we compared the toxic properties, fibrillogenic capabilities, and in vitro degradation profile of Abeta1-40, Abeta1-42, AbetaN3(pE)-40 and AbetaN3(pE)-42. Our data show that fibre morphology of Abeta peptides is greatly influenced by the C-terminus while toxicity, interaction with cell membranes and degradation are influenced by the N-terminus. AbetaN3(pE)-40 induced significantly more cell loss than the other species both in neuronal and glial cell cultures. Aggregated AbetaN3(pE) peptides were heavily distributed on plasma membrane and within the cytoplasm of treated cells. AbetaN3(pE)-40/42 peptides showed a significant resistance to degradation by cultured astrocytes, while full-length peptides resulted partially degraded. These findings suggest that formation of N-terminally modified peptides may enhance beta-amyloid aggregation and toxicity, likely worsening the onset and progression of the disease.  相似文献   

13.
The neuropathological correlates of Alzheimer's disease (AD) include amyloid-beta (Abeta) plaques and neurofibrillary tangles. To study the interaction between Abeta and tau and their effect on synaptic function, we derived a triple-transgenic model (3xTg-AD) harboring PS1(M146V), APP(Swe), and tau(P301L) transgenes. Rather than crossing independent lines, we microinjected two transgenes into single-cell embryos from homozygous PS1(M146V) knockin mice, generating mice with the same genetic background. 3xTg-AD mice progressively develop plaques and tangles. Synaptic dysfunction, including LTP deficits, manifests in an age-related manner, but before plaque and tangle pathology. Deficits in long-term synaptic plasticity correlate with the accumulation of intraneuronal Abeta. These studies suggest a novel pathogenic role for intraneuronal Abeta with regards to synaptic plasticity. The recapitulation of salient features of AD in these mice clarifies the relationships between Abeta, synaptic dysfunction, and tangles and provides a valuable model for evaluating potential AD therapeutics as the impact on both lesions can be assessed.  相似文献   

14.
Alzheimer's disease (AD) is a common neurodegenerative disease that affects cognitive function in the elderly. Large extracellular beta-amyloid (Abeta) plaques and tau-containing intraneuronal neurofibrillary tangles characterize AD from a histopathologic perspective. However, the severity of dementia in AD is more closely related to the degree of the associated neuronal and synaptic loss. It is not known how neurons die and synapses are lost in AD; the current review summarizes what is known about this issue. Most evidence indicates that amyloid precursor protein (APP) processing is central to the AD process. The Abeta in plaques is a metabolite of the APP that forms when an alternative (beta-secretase and then gamma-secretase) enzymatic pathway is utilized for processing. Mutations of the APP gene lead to AD by influencing APP metabolism. One leading theory is that the Abeta in plaques leads to AD because Abeta is directly toxic to the adjacent neurons. Other theories advance the notion that neuronal death is triggered by intracellular events that occur during APP processing or by extraneuronal preplaque Abeta oligomers. Some investigators speculate that in many cases there is a more general disorder of protein processing in neurons that leads to cell death. In the later models, Abeta plaques are a byproduct of the disease process, rather than the direct cause of neuronal death. A direct correlation between Abeta plaque burden and neuronal (or synaptic) loss should occur in AD if Abeta plaques cause AD through a direct toxic effect. However, histopathologic studies indicate that the correlation between Abeta plaque burden and neuronal (or synaptic) loss is poor. We conclude that APP processing and Abeta formation is important to the AD process, but that neuronal alterations that underlie symptoms of AD are not due exclusively to a direct toxic effect of the Abeta deposits that occur in plaques. A more general problem with protein processing, damage due to the neuron from accumulation of intraneuronal Abeta or extracellular, preplaque Abeta may also be important as underlying factors in the dementia of AD.  相似文献   

15.
Microtubule-associated protein tau is an intrinsically disordered, highly soluble protein found primarily in neurons. Under normal conditions, tau regulates the stability of axonal microtubules and intracellular vesicle transport. However, in patients of neurodegeneration such as Alzheimer's disease (AD), tau forms neurofibrillary deposits, which correlates well with the disease progression. Identifying molecular signatures in tau, such as posttranslational modification, truncation, and conformational change has great potential to detect earliest signs of neurodegeneration and develop therapeutic strategies. Here, we show that full-length human tau, including the longest isoform found in the adult brain, can be robustly displayed on the surface of yeast Saccharomyces cerevisiae. Yeast-displayed tau binds to anti-tau antibodies that cover epitopes ranging from the N-terminus to the 4R repeat region. Unlike tau expressed in the yeast cytosol, surface-displayed tau was not phosphorylated at sites found in AD patients (probed by antibodies AT8, AT270, AT180, and PHF-1). However, yeast-displayed tau showed clear binding to paired helical filament (PHF) tau conformation-specific antibodies Alz-50, MC-1, and Tau-2. Although the tau possessed a conformation found in PHFs, oligomerization or aggregation into larger filaments was undetected. Taken together, yeast-displayed tau enables robust measurement of protein interactions and is of particular interest for characterizing conformational change.  相似文献   

16.
We reviewed here that protein isomerization is enhanced in amyloid-beta peptides (Abeta) and paired helical filaments (PHFs) purified from Alzheimer's disease (AD) brains. Biochemical analyses revealed that Abeta purified from senile plaques and vascular amyloid are isomerized at Asp-1 and Asp-7. A specific antibody recognizing isoAsp-23 of Abeta further suggested the isomerization of Abeta at Asp-23 in vascular amyloid as well as in the core of senile plaques. Biochemical analyses of purified PHFs also revealed that heterogeneous molecular weight tau contains L-isoaspartate at Asp-193, Asn-381, and Asp-387, indicating a modification, other than phosphorylation, that differentiates between normal tau and PHF tau. Since protein isomerization as L-isoaspartate causes structural changes and functional inactivation, or enhances the aggregation process, this modification is proposed as one of the progression factors in AD. Protein L-isoaspartyl methyltransferase (PIMT) is suggested to play a role in the repair of isomerized proteins containing L-isoaspartate. We show here that PIMT is upregulated in neurodegenerative neurons and colocalizes in neurofibrillary tangles (NFTs) in AD. Taken together with the enhanced protein isomerization in AD brains, it is implicated that the upregulated PIMT may associate with increased protein isomerization in AD. We also reviewed studies on PIMT-deficient mice that confirmed that PIMT plays a physiological role in the repair of isomerized proteins containing L-isoaspartate. The knockout study also suggested that the brain of PIMT-deficient mice manifested neurodegenerative changes concomitant with accumulation of L-isoaspartate. We discuss the pathological implications of protein isomerization in the neurodegeneration found in model mice and AD.  相似文献   

17.
Brain plaque deposits of amyloid-beta peptide (Abeta) is a pathological hallmark of Alzheimer's disease (AD) and apolipoprotein E (apoE) is thought to be involved in its deposition. One hypothesis for the role of apoE in the pathogenesis of AD is that apoE may be involved in deposition or clearance of Abeta by direct protein-to-protein interaction. Lipidated apoE4 bound preferentially to an intermediate aggregated form of Abeta and formed two- to three-fold more binding complexes than isoforms apoE2 or apoE3. The interaction was detected by a sandwich ELISA with capture antibodies specific for the N-terminus of apoE, whereas the interaction was not recognized with a C-terminal antibody. The observations indicate that the C-terminus of apoE4 interacts with the intermediate form of Abeta. The differential risk of AD related to apoE genotype may be the result of an enhanced capacity of apoE4 binding to an intermediate aggregated form of Abeta.  相似文献   

18.
Apoptosis in transgenic mice expressing the P301L mutated form of human tau   总被引:3,自引:0,他引:3  
The rTg4510 mouse is a tauopathy model, characterized by massive neurodegeneration in Alzheimer's disease (AD)-relevant cortical and limbic structures, deficits in spatial reference memory, and progression of neurofibrillary tangles (NFT). In this study, we examined the role of apoptosis in neuronal loss and associated tau pathology. The results showed that DNA fragmentation and caspase-3 activation are common in the hippocampus and frontal cortex of young rTg4510 mice. These changes were associated with cleavage of tau into smaller intermediate fragments, which persist with age. Interestingly, active caspase-3 was often co-localized with cleaved tau. In vitro, fibrillar Abeta(1-42) resulted in nuclear fragmentation, caspase activation, and caspase-3-induced cleavage of tau. Notably, incubation with the antiapoptotic molecule tauroursodeoxycholic acid abrogated apoptosis-mediated cleavage of tau in rat cortical neurons. In conclusion, caspase-3-cleaved intermediate tau species occurred early in rTg54510 brains and preceded cell loss in Abeta-exposed cultured neurons. These results suggest a potential role of apoptosis in neurodegeneration.  相似文献   

19.
Alzheimer's Disease (AD) is defined histopathologically by extracellular beta-amyloid (Abeta) fibrils plus intraneuronal tau filaments. Studies of transgenic mice and cultured cells indicate that AD is caused by a pathological cascade in which Abeta lies upstream of tau, but the steps that connect Abeta to tau have remained undefined. We demonstrate that tau confers acute hypersensitivity of microtubules to prefibrillar, extracellular Abeta in nonneuronal cells that express transfected tau and in cultured neurons that express endogenous tau. Prefibrillar Abeta42 was active at submicromolar concentrations, several-fold below those required for equivalent effects of prefibrillar Abeta40, and microtubules were insensitive to fibrillar Abeta. The active region of tau was localized to an N-terminal domain that does not bind microtubules and is not part of the region of tau that assembles into filaments. These results suggest that a seminal cell biological event in AD pathogenesis is acute, tau-dependent loss of microtubule integrity caused by exposure of neurons to readily diffusible Abeta.  相似文献   

20.
Accumulation of hyperphosphorylated tau in the entorhinal cortex (EC) is one of the earliest pathological hallmarks in patients with Alzheimer’s disease (AD). It can occur before significant Aβ deposition and appears to “spread” into anatomically connected brain regions. To determine whether this early-stage pathology is sufficient to cause disease progression and cognitive decline in experimental models, we overexpressed mutant human tau (hTauP301L) predominantly in layer II/III neurons of the mouse EC. Cognitive functions remained normal in mice at 4, 8, 12 and 16 months of age, despite early and extensive tau accumulation in the EC. Perforant path (PP) axon terminals within the dentate gyrus (DG) contained abnormal conformations of tau even in young EC-hTau mice, and phosphorylated tau increased with age in both the EC and PP. In old mice, ultrastructural alterations in presynaptic terminals were observed at PP-to-granule cell synapses. Phosphorylated tau was more abundant in presynaptic than postsynaptic elements. Human and pathological tau was also detected within hippocampal neurons of this mouse model. Thus, hTauP301L accumulation predominantly in the EC and related presynaptic pathology in hippocampal circuits was not sufficient to cause robust cognitive deficits within the age range analyzed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号