首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We reexamined the absolute configuration (AC) of the chiral sulfoxide 1-thiochromanone S-oxide (1) using vibrational circular dichroism (VCD) spectroscopy. The VCD spectrum of 1 was analyzed using density functional theory (DFT). DFT predicts two stable conformations of 1, separated by <1 kcal/mole. Their VCD spectra were calculated using the DFT/GIAO methodology. The VCD spectrum predicted for the equilibrium mixture of the two conformations of (S)-1 is in excellent agreement with the experimental spectrum of (+)-1. The AC of 1 is therefore definitively R(-)/S(+).  相似文献   

2.
The development of density functional theory (DFT) methods for the calculation of vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and transparent spectral region optical rotation (OR) has revolutionized the determination of the absolute configurations (ACs) of chiral molecules using these chiroptical properties. We report the concerted application of DFT calculations of VCD, ECD, and OR to the determination of the ACs of the isoschizozygane alkaloid natural products, isoschizogaline, and isochizogamine, whose ACs have not previously been determined. The ACs of naturally occurring (-)-isoschizogaline and (-)-isoschizogamine, are both determined definitively to be 2R, 7R, 20S, 21S.  相似文献   

3.
The use of isotopic difference spectra in vibrational optical activity is demonstrated as a supplemental aide in determining the absolute configuration of chiral molecules. It is shown that IR and VCD difference spectra associated with isotopic substitution observed in experimental spectra can be accurately reproduced by density functional theory calculations when the IR and VCD spectra of the original isotopomer are calculated to reasonable accuracy. Results for isotopically substituted nonamethoxy cyclotriveratrylene are presented to illustrate the degree of agreement between measured and calculated IR and VCD difference spectra for several isotopomers of this molecule. These findings highlight the utility of isotoptic substitution as an aide to verifying the determination of absolute configuration using vibrational optical activity.  相似文献   

4.
The racemate of the chiral tricarbonyl-η6-arene-chromium(0) complex, tricarbonyl-η6-N-pivaloyl-tetrahydroquinoline-chromium(0), 1, has been synthesized and resolved using chromatography on a (R,R)-Whelk-O1 column. The Absolute Configuration (AC) of 1 has been determined using vibrational circular dichroism (VCD) spectroscopy. The VCD spectrum of 1 has been predicted using the Stephens equation for vibrational rotational strengths, implemented using density functional theory (DFT) in the gaussian program. Using the B3PW91 functional and the 6-311++G (2d,2p) basis set, the predicted VCD spectrum of S-1 is in excellent agreement with the experimental VCD spectrum of (+)-1, leading unambiguously to the AC S-(+). It is concluded that VCD is a useful technique for determining the ACs of chiral organometallic complexes, given the use of optimum functionals and basis sets.  相似文献   

5.
Stephens PJ  Devlin FJ 《Chirality》2000,12(4):172-179
We discuss the theoretical prediction of vibrational circular dichroism (VCD) spectra using ab initio density functional theory (DFT) and the application of this methodology to the determination of the absolute configurations and conformations of chiral molecules.  相似文献   

6.
The solid-state structure of LL/DD or LD/DL diphenylalanine diluted in KBr pellets is studied by infrared (IR) absorption and vibrational circular dichroism (VCD) spectroscopy. The structure depends on the absolute configuration of the residues. The natural LL diphenylalanine exists as a mixture of neutral and zwitterionic structures, depending on the humidity of the sample, while mostly the zwitterion is observed for LD diphenylalanine whatever the experimental conditions. The system undergoes spontaneous cyclization upon heating at 125°C, resulting to the formation of a diketopiperazine (DKP) dipeptide as the only product. The reaction is faster for LD than for LL diphenylalanine. As expected, LL and DD diphenylalanine react to form the LL and DD enantiomers of cyclo diphenylalanine. Interestingly, the DKP dipeptides formed from the LD or DL diphenylalanine show unexpected optical activity, with opposite VCD spectra for the products formed from the LD and DL reagents. This is explained in terms of chirality synchronization between the monomers within the crystal, which retain the symmetry of the reagent, resulting to the formation of a new chiral phase made from transiently chiral molecules.  相似文献   

7.
Chiral α‐methylbenzyl amine is a well known and often used chiral auxiliary, e.g., in the resolution of racemates or asymmetric catalysis. In this work, α‐methylbenzyl amine and its derivatives N,α‐dimethylbenzyl amine, N,N,α‐trimethylbenzyl amine, and bis[α‐methylbenzyl] amine were investigated by vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT). For all compounds, stable low energy conformers were obtained by the DFT calculations and based on those, the theoretical vibrational absorption (VA) and VCD spectra were calculated and compared with experimental spectra. Hence, the absolute configurations and conformational preferences were determined. A qualitative comparison of all the experimental VCD spectra of the investigated chiral molecules supported by the calculated ones is given which clearly shows similarities between the spectra of the different chiral amines. These can be assigned to vibrations of the unchanged chiral center. Chirality 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Morita HE  Kodama TS  Tanaka T 《Chirality》2006,18(10):783-789
Infrared (IR) and vibrational circular dichroism (VCD) spectra of chiral camphor, camphorquinone and camphor-10-sulfonic acid (CSA), known as standard compounds for electronic circular dichroism (ECD) spectroscopy, are measured and their vibrational frequencies, infrared intensities, and rotational strengths are calculated using density functional theory (DFT). The observed IR and VCD spectra of chiral camphor and camphorquinone in carbon tetrachloride solution are reproduced by the DFT calculations, but those of CSA are not. DFT calculations of hydration models, where an anionic CSA specifically binds a few water molecules, are carried out. The average of the simulated VCD spectra in the hydration models is more consistent with the observed spectra. In addition, the wavelengths and dipole and rotational strengths for chiral camphor, camphorquinone, anionic CSA, and the hydration models were calculated by time-dependent DFT. In the region of 280-300 nm, the calculated wavelengths of the ECD bands for chiral camphor and camphorquinone coincide with the observed wavelengths that have been reported, and the calculated wavelengths for the hydration models are closer to the observed wavelengths reported than are those calculated for chiral anionic CSA. Consequently, the analysis combined with VCD and ECD spectroscopy using DFT calculations can elucidate the chirality of optically active molecules, even in an aqueous solution.  相似文献   

9.
Freedman TB  Cao X  Dukor RK  Nafie LA 《Chirality》2003,15(9):743-758
Advances in the measurement, calculation, and application of vibrational circular dichroism (VCD) for the determination of absolute configuration are described. The purpose of the review is to provide an up-to-date perspective on the capability of VCD to solve problems of absolute stereochemistry for chiral molecules primarily in the solution state. The scope of the article covers the experimental methods needed for the accurate measurement of VCD spectra and the theoretical steps required to systematically deduce absolute configuration. Determination of absolute configuration of a molecule by VCD requires knowledge of its conformation or conformational distribution, and hence VCD analysis necessarily provides solution-state conformation information, in many cases available by no other method, as an additional benefit. Comparisons of the advantages and limitations of VCD relative to other available chiroptical methods of analysis are also presented.  相似文献   

10.
Wu T  Zhang XP  Li CH  Bouř P  Li YZ  You XZ 《Chirality》2012,24(6):451-458
Novel copper(II) coordination compounds with chiral macrocyclic imine ligands derived from R-/S-camphor were asymmetrically synthesized and characterized with the aid of chiroptical spectroscopies. Crystal structures of both enantiomers were determined by single crystal X-ray diffraction analysis. Circular dichroism (CD) spectra were analyzed using a simplified exciton model as well as quantum chemical computations. The absolute configuration of the copper(II) coordination compounds determined from CD was found consistent with the crystal data. The copper(II) complexes were further investigated by vibrational CD (VCD) measurement combined with density functional theory calculation. The complex formation was evidenced by spectral shifts of the characteristic bands in the CD and VCD spectra.  相似文献   

11.
The electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectra of both enantiomers of naringenin (4',5,7-trihydroxyflavanone) in acetonitrile solution have been measured. The enantiomers were obtained by chiral HPLC separation of the racemic sample. DFT calculations have been performed for relevant conformers and subsequent evaluations of VCD spectra are compared with VCD experiments: safe assignment of the absolute configuration is provided, based in particular on the VCD data. The relevance of the rotational conformers of the hydroxyl groups and of the mobility of phenol moiety is studied: based on this, we provide a first interpretation of the observed intense and broad couplet at 1325/1350 cm(-1). Four conformers contribute to this pattern with different sign and amplitude as shown by DFT calculations. Time dependent DFT calculations have been performed and compared with ECD experimental data, under the same assumption of conformational properties and mobilities investigated by VCD.  相似文献   

12.
The absolute configurations (AC) of natural occurring 6-hydroxyeuryopsin (1), of its acetyl derivative 2, and of eremophilanolide 8 were confirmed by comparison of the experimental vibrational circular dichroism (VCD) spectra with theoretical curves generated from density functional theory (DFT) calculations. Initial analyses were carried out using a Monte Carlo searching with the MMFF94 molecular mechanics force field. All MMFF94 conformers were further optimized using DFT at the B3LYP/6-31G(d) level of theory, followed by calculations of their vibrational frequencies at the B3LYP/6-31G(d,p); the VCD spectra of 2 and 8 were also calculated at the B3PW91/DGDZVP level of theory. Good agreement between theoretical and experimental VCD curves unambiguously verified the 4S,5R,6S absolute configuration for 1 and 2, and the 1S,4S,5R,6S,8S,10S configuration for 8.  相似文献   

13.
《Chirality》2017,29(12):854-864
The absolute configurations of the separated enantiomers of fluralaner, a racemic animal health product used to prevent fleas and ticks, have been assigned using vibrational circular dichroism (VCD). The crystallographic structure of the active enantiomer (+)‐fluralaner has previously been shown to have the (S ) configuration using small molecule crystallography. We sought a faster analytical method to determine the absolute configuration of the separated enantiomers. When comparing the measured IR (infrared) and VCD spectra, it is apparent that the amide carbonyl groups appear in the IR but are nearly absent in the VCD. Computational work to calculate the VCD and IR using in vacuo models, implicit solvation, and explicitly solvated complexes has implicated conformational averaging of the carbonyl VCD intensities.  相似文献   

14.
The vibrational circular dichroism (VCD) spectra of perezone and dihydroperezone measured from CDCl3 solutions were quite similar, suggesting analogous conformations for both molecules. Their absolute configurations were confirmed by comparison of the experimental VCD spectrum of each compound with curves generated from theoretical calculations using density functional theory (DFT) at the B3LYP/DGDZVP level of theory taking into account their conformational mobility. Conformational analysis of the 8-(R) enantiomer showed 19 low energy conformers in a 2.4 kcal/mol energy range, while for 8-(R), with the saturated side alkyl chain, 34 conformers were considered in the first 2 kcal/mol. Initial analyses were carried out using a Monte Carlo searching with the MMFF94 molecular mechanics force field, all MMFF94 conformers were geometrically optimized using DFT at the B3LYP/6-31G(d) level of theory, followed by reoptimization and calculations of their vibrational frequencies at the B3LYP/DGDZVP level. Good agreement between the theoretical 8-(R) enantiomers and experimental VCD curves were observed for both.  相似文献   

15.
In the present work, we report a comprehensive vibrational circular dichroism (VCD) spectroscopic study of a chiral crown ether which features an axial chiral 3.3'‐diphenyl‐1,1'‐binaphthyl group as chiral moiety. By comparing the experimental and calculated VCD spectra, we show that the presumably very flexible crown ether preferably adopts only one ring conformation. Conformational flexibility is observed in the 2,4‐dinitrophenyl‐diazophenol group, which was previously introduced for colorimetric detection of primary amines and amino alcohols (Cho et al., Chirality 2011;23:349–353). The VCD spectra of the host–guest complexes with phenyl glycinol (PG) and phenyl alaninol have been studied as well. Based on the spectra calculated, it is shown that the diastereomeric complexes in general can be differentiated using VCD spectroscopy. Furthermore, the experimental VCD spectra of the complexes of the host molecule with PG support the above finding. Chirality 25:294–300, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
17.
We have carried out a structural and vibrational study for 5-phenyl-1,3,4-oxadiazole-2-thiol by using the infrared (IR) spectrum and theoretical calculations. For a complete assignment of the compound IR spectrum, density functional theory calculations were combined with Pulay's scaled quantum mechanical force field methodology in order to fit the theoretical wavenumber values to the experimental ones. An agreement between theoretical and available experimental results was found. The theoretical vibrational calculations allowed us to obtain a set of scaled force constants fitting the observed wavenumbers. The results were then used to predict the Raman spectra, for which there are no experimental data. The nature of the benzyl and oxadiazole rings was studied by means of natural bond order and atoms in molecules theory calculations. In addition, the frontier molecular (highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)) orbitals were analysed and compared with those calculated for the oxadiazole molecule.  相似文献   

18.
The molecules‐in‐molecules (MIM) fragment‐based method has recently been adapted to evaluate the chiroptical (vibrational circular dichroism [VCD] and Raman optical activity [ROA]) spectra of large molecules such as peptides. In the MIM‐VCD and MIM‐ROA methods, the relevant higher energy derivatives of the parent molecule are assembled from the corresponding derivatives of smaller fragment subsystems. In addition, the missing long‐range interfragment interactions are accounted at a computationally less expensive level of theory (MIM2). In this work we employed the MIM‐VCD and MIM‐ROA fragment‐based methods to explore the evolution of the chiroptical spectroscopic characteristics of 310‐helix, α‐helix, β‐hairpin, γ‐turn, and β‐extended conformers of gas phase polyalanine (chain length n = 6–14). The different conformers of polyalanine show distinctive features in the MIM chiroptical spectra and the associated spectral intensities increase with evolution of system size. For a better understanding the site‐specific effects on the vibrational spectra, isotopic substitutions were also performed employing the MIM method. An increasing redshift with the number of isotopically labeled 13C=O functional groups in the peptide molecule was seen. For larger polypeptides, we implemented the two‐step‐MIM model to circumvent the high computational expense associated with the evaluation of chiroptical spectra at a high level of theory using large basis sets. The chiroptical spectra of α‐(alanine)20 polypeptide obtained using the two‐step‐MIM model, including continuum solvation effects, show good agreement with the full calculations and experiment. This benchmark study suggests that the MIM‐fragment approach can assist in predicting and interpreting chiroptical spectra of large polypeptides.  相似文献   

19.
This article reports vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopic studies in acetonitrile on the chiral Rh(2)(O-Phe-Cbz)(1)(OAc)(3) and Rh(2)(O-Phe-Ac)(1)(OAc)(3) complexes (abbreviated Rh(2)Z(1) and Rh(2)Ac(1) , respectively; Phe, L-phenylalanine; Cbz, benzyloxycarbonyl; Ac, acetyl) supported by theoretical calculations. The ECD spectra of the complexes depend on temperature that indicates the conformational mobility of the chiral ligands. Calculations of the VCD spectra were performed at ab initio (DFT) level of theory using Gaussian 03 [B3LYP functional combined with the LANL2DZ basis set for the dirhodium core and the 6-31G(d) basis set for other atoms]. The population-weighted sums of the computed VCD spectra of the conformers are in excellent agreement with the experimental VCD spectra. The combination of the VCD and ECD spectroscopic methods led us to the structural characterization of the complexes.  相似文献   

20.
Lattanzi A  Russo A  Rizzo P  Monaco G  Zanasi R 《Chirality》2010,22(Z1):E130-E135
Density Functional Theory (DFT) calculations of optical rotation (OR) and vibrational circular dichroism (VCD) have been used to assign the absolute configuration (AC) of a recently prepared (3-phenyloxirane-2,2-diyl)bis(phenylmethanone), 3, by asymmetric epoxidation of the corresponding 2-arylidene-1,3-diketone. The experimental OR at 589.3 nm and the VCD spectrum of the (+)- and (-)-enantiomer of 3 have been measured. The conformationally-averaged OR value and VCD spectrum of (R)-3 were calculated at B3LYP/6-311G(2d,2p) level of theory. Both approaches provide the same absolute configuration of the stereogenic carbon, i.e. the AC of (+)-3 is (R)-3, thus affording a confident assignment. Only two conformational isomers of 3 have been predicted to be populated at ambient temperature. Their presence is directly observed in the VCD spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号