首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The tight skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of the human disease including tight skin, fibrosis, extracellular matrix abnormalities, and reported antinuclear antibodies (ANA). Here we report that Tsk2/+ mice develop excess dermal fibrosis with age, as skin is not significantly fibrotic until 10 weeks, a full eight weeks after the development of the physical tight skin phenotype. Concomitantly with the tight skin phenotype at two weeks of age, Tsk2/+ mice demonstrate increased levels of total transforming growth factor beta 1 (TGF-β1) and excessive accumulation of dermal elastic fibers. The increase in elastic fibers is not responsible for tight skin, however, because Tsk2/+ mice genetically engineered to lack skin elastic fibers nevertheless have tight skin and fibrosis. Finally, about two months after the first measurable increases of total collagen, a portion of Tsk2/+ mice produce ANAs, but at a similar level to wild-type littermates. The timeline of disease development in the Tsk2/+ mouse shows that fibrosis is progressive, with elastic fiber alterations and TGF-β1 over-production occurring at least two months before bona fide fibrosis, that is not dependent on ANA production.  相似文献   

2.
The tight-skin (Tsk/+) mutant mice, a putative murine model of scleroderma, are characterized by the excessive deposition of collagen and the presence of antinuclear antibodies. Type 2 cytokines, such as IL-4 and IL-6, are capable of regulating the synthesis of various matrix molecules, including type I collagen, by fibroblasts. IL-12 is well known to induce type 1 cytokine production and to reduce type 2 activity. Here, we examined the effect of IL-12 encoding plasmid (pCAGGSIL-12) on the disease progression of Tsk/+ mice. pCAGGSIL-12 plasmid or pCAGGS parental vector was injected intramuscularly 7 times at 3 week intervals into Tsk/+ mice. One week after the last injection, pCAGGSIL-12 administered Tsk/+ mice exhibited a marked decrease in the skin thickness compared with the mice treated with pCAGGS vector. The serum levels of antinuclear antibodies were diminished in pCAGGSIL-12 treated mice. IL-4 production by spleen cells from pCAGGSIL-12 plasmid treated mice was significantly lower than that from vector treated mice. These results indicate that pCAGGSIL-12 administration into Tsk/+ mice had beneficial effects in preventing the collagen accumulation in the skin and suppressing the autoimmunity via improvement of Th1/Th2 balance. The present study suggests that the IL-12 encoding plasmid administration might have a therapeutic effect on systemic sclerosis.  相似文献   

3.
The tight skin-2 (Tsk2/+) mouse has been proposed as an animal model of systemic sclerosis (SSc) because this animal exhibits increased collagen synthesis and accumulation in the dermis. The Tsk2/+ mouse also has been reported to have a mononuclear cell infiltrate in the dermis; however, to date no evidence of autoimmunity has been described in this animal model. We report here that Tsk2/+ mice harbor numerous autoantibodies in their plasma including some, which are similar to those, present in SSc patients. Immunofluorescence with HEp-2 cells revealed the presence of anti-nuclear Abs (ANAs) in the plasma of 92% of the Tsk2/+ mice. In contrast, <5% of cage-mated CAST/ei mice had a positive ANA and none of the C3H/HeJ age-matched controls were positive. Homogenous, speckled, rim, nucleolar, centromere as well as combinations of these patterns were observed. The proportion of Tsk2/+ animals with a positive ANA increased slightly with age. ELISAs showed that 93% of the Tsk2/+ animals were positive for anti-Scl70, 82% for anti-centromere, 5% for anti-RNP/Sm, and none were positive for anti-RNA-polymerase II Abs. Indirect immunofluorescence with Crithidia luciliae and ELISA for anti-dsDNA Abs showed that 76% of Tsk2/+ mice were positive for this autoantibody. The high frequency of anti-Scl70 and anti-centromere autoantibodies indicates that Tsk2/+ mice display some humoral immune alterations which are similar to those found in patients with SSc. However, the Tsk2/+ mice also develop autoantibodies to dsDNA and a majority of the mice develop multiple autoantibody specificities (anti-Scl70, anti-CENP-B, and anti-dsDNA) indicating that the mouse may be a useful model to study autoimmunity in a wider spectrum of connective tissue diseases.  相似文献   

4.
5.
The Tight skin (Tsk) mutation is a duplication of the mouse fibrillin 1 (Fbn1) gene that results in a larger (418 kD) than normal (350 kD) protein; Tsk/+ mice display increased connective tissue, bone overgrowth, and lung emphysema. Lung emphysema, bone overgrowth, and vascular complications are the distinctive traits of mice with reduced Fbn1 gene expression and of Marfan syndrome (MFS) patients with heterozygous fibrillin 1 mutations. Although Tsk/+ mice produce equal amounts of the 418- and 350-kD proteins, they exhibit a relatively mild phenotype without the vascular complications that are associated with MFS patients and fibrillin 1-deficient mice. We have used genetic crosses, cell culture assays and Tsk-specific antibodies to reconcile this discrepancy and gain new insights into microfibril assembly. Mice compound heterozygous for the Tsk mutation and hypomorphic Fbn1 alleles displayed both Tsk and MFS traits. Analyses of immunoreactive fibrillin 1 microfibrils using Tsk- and species-specific antibodies revealed that the mutant cell cultures elaborate a less abundant and morphologically different meshwork than control cells. Cocultures of Tsk/Tsk fibroblasts and human WISH cells that do not assemble fibrillin 1 microfibrils, demonstrated that Tsk fibrillin 1 copolymerizes with wild-type fibrillin 1. Additionally, copolymerization of Tsk fibrillin 1 with wild-type fibrillin 1 rescues the abnormal morphology of the Tsk/Tsk aggregates. Therefore, the studies suggest that bone and lung abnormalities of Tsk/+ mice are due to copolymerization of mutant and wild-type molecules into functionally deficient microfibrils. However, vascular complications are not present in these animals because the level of functional microfibrils does not drop below the critical threshold. Indirect in vitro evidence suggests that a potential mechanism for the dominant negative effects of incorporating Tsk fibrillin 1 into microfibrils is increased proteolytic susceptibility conferred by the duplicated Tsk region.  相似文献   

6.
To test the hypothesis of an extra-dermal origin of dermal fibroblasts, parabiosis, and transplantation models were developed utilizing a collagen promoter green fluorescent protein (GFP) reporter transgene expressed in dermal fibroblasts. Parabiotic pairs were treated with bleomycin to induce the skin fibrosis that was evaluated for a dense deposition of collagen and inflammatory cell infiltrates in the thickened dermis in comparison with parabiotic pairs treated with saline. Although, in all cases, repeated injection of bleomycin for 4 weeks induced skin fibrosis, only a few GFP positive cells were detected in skin samples from some of the treated non-transgenic mice. Unexpectedly, similar results were observed in saline treated controls. Furthermore, bone marrow chimeras were created in which non-transgenic recipient mice received injections of bone marrow cell preparations isolated from pOBCol3.6GFP transgenic mice. After bone marrow chimerism had been successfully established, fibrotic lesions in the skin were induced by local bleomycin injections. Donor GFP expressing cells were observed in the skin from all recipient mice. However, no difference in the presence of GFP expressing cells was observed between non-treated mice or mice treated with bleomycin or saline. A large number of GFP expressing cells were observed in the lung preparations from all chimeric mice. Mac-3 antibody immunostaining confirmed a macrophage phenotype for these GFP expressing cells suggesting the expression of the pOBCol3.6GFP transgene in a non-collagen producing cell. Based on these observations, we found no evidence of circulating dermal fibroblast progenitors that participate in the development of bleomycin-induced skin fibrosis.  相似文献   

7.
The development of immunity to homologous connective tissue antigens was studied with respect to aging in the tight-skin (Tsk) mouse mutant. A delayed-type hypersensitivity (DTH) response to elastase-solubilized lung peptides in Tsk/+ mice, which became evident at 10 weeks of age and increased in intensity until 22 weeks, was observed. Tsk mice did not demonstrate significant DTH responses when challenged with type I or IV collagen, and normal (+/+) littermates of all ages did not respond to any of the antigens under study. DTH responses could be adoptively transferred to normal +/+ and C57BL/6 mice with spleen cells from 30-week-old Tsk/+ mice; treatment with anti-Thy 1.2 antibodies plus complement significantly reduced the ability of these Tsk/+ cells to transfer DTH reactivity. No antibody activity to the antigens under study could be detected in the sera of Tsk/+ or +/+ mice at any age. These results are discussed with regard to the pathological manifestations observed in the Tsk/+ mutant mouse.  相似文献   

8.
A role for T helper 2 cells in mediating skin fibrosis in tight-skin mice.   总被引:6,自引:0,他引:6  
Mice heterozygous for the tight-skin (Tsk) mutation develop skin fibrosis. Previous studies have implicated a role for the immune system and, specifically, CD4(+) T cells, in the etiology of skin fibrosis in Tsk/+ mice. We have recently shown that the administration of neutralizing anti-IL-4 antibodies to Tsk/+ mice prevented the development of skin fibrosis in these mice. Since IL-4 is a major cytokine produced by T helper 2 (Th2) cells, we investigated the role of Th2 cells in mediating skin fibrosis in Tsk/+ mice. Previous studies have shown that the development of Th2 cells in non-Tsk mice is abrogated in mice with null mutation for either the IL-4 or the Stat6 gene. In this study we showed that the polarization of CD4(+) T cells from Tsk/+ mice toward the Th2 lineage is also dependent on a functioning IL-4 or Stat6 gene. More importantly, the development of skin fibrosis in Tsk/+ mice was abrogated by the IL4(-/-) or the Stat6(-/-) mutation. We also determined whether alteration of the TCR repertoire in Tsk/+ mice, achieved by the introduction of TCR transgenes, was able to prevent the development of skin fibrosis in Tsk/+ mice. We found that the exclusive usage of the Vbeta8.2 gene segment by T cells was sufficient to prevent skin fibrosis in Tsk/+ mice. This result suggests that the exclusive use of this Vbeta gene segment by T cells may have prevented the development of fibrosis-causing Th2 cells.  相似文献   

9.
Interferon regulatory factor 5 (IRF5) has been called a “master switch” for its ability to determine whether cells mount proinflammatory or anti-inflammatory responses. Accordingly, IRF5 should be an attractive target for therapeutic drug development. Here we report on the development of a novel decoy peptide inhibitor of IRF5 that decreases myocardial inflammation and improves vascular endothelial cell (EC) function in tight-skin (Tsk/+) mice. Biolayer interferometry studies showed the Kd of IRF5D for recombinant IRF5 to be 3.72 ± 0.74x10-6M. Increasing concentrations of IRF5D (0–100 μg/mL, 24h) had no significant effect on EC proliferation or apoptosis. Treatment of Tsk/+ mice with IRF5D (1mg/kg/d subcutaneously, 21d) reduced IRF5 and ICAM-1 expression and monocyte/macrophage and neutrophil counts in Tsk/+ hearts compared to expression in hearts from PBS-treated Tsk/+ mice (p<0.05). EC-dependent vasodilatation of facialis arteries isolated from PBS-treated Tsk/+ mice was reduced (~15%). IRF5D treatments (1mg/kg/d, 21d) improved vasodilatation in arteries isolated from Tsk/+ mice nearly 3-fold (~45%, p<0.05), representing nearly 83% of the vasodilatation in arteries isolated from C57Bl/6J mice (~55%). IRF5D (50μg/mL, 24h) reduced nuclear translocation of IRF5 in myocytes cultured on both Tsk/+ cardiac matrix and C57Bl/6J cardiac matrix (p<0.05). These data suggest that IRF5 plays a causal role in inflammation, fibrosis and impaired vascular EC function in Tsk/+ mice and that treatment with IRF5D effectively counters IRF5-dependent mechanisms of inflammation and fibrosis in the myocardium in these mice.  相似文献   

10.
Collagen V plays a major regulatory role in the formation of heterotypic fibers of the dermis and cartilaginous tissues as well as in the assembly of extracellular matrix. The pN/pN mouse, which is defective in collagen V alpha 2 gene, exhibits skeletal abnormalities, skin fragility, and alterations in the collagen fiber organization, whereas the TSK/+ mouse, which is defective in fibrillin-1, the major component of microfibrils present in the extracellular matrix, develops cutaneous hyperplasia and autoimmunity. We have studied the role of collagen V in the formation of heterotypic collagen fibers in F1 mice, which are obtained by breeding pN/pN with TSK/+ mice. Our results show that F1 progeny neither develop cutaneous hyperplasia nor produce anti-topoisomerase I autoantibodies, unlike TSK/+ mice. The diameter of the collagen fibrils in the skin is also comparable to that found in control mice. Thus, the phenotypic changes observed in the TSK mouse could be reversed by genetic complementation with a collagen V-defective mouse.  相似文献   

11.
12.
The mouse W locus encodes Kit, the receptor tyrosine kinase for stem cell factor (SCF). Kit is required for several developmental processes, including the proliferation and survival of melanoblasts. Because of the nearly complete failure of Wrio/+ melanoblasts to colonize the skin, the costs of Wrio/+ mice are characterized by a majority of white hairs interspersed among pigmented hairs, giving a roan effect. However, 3.6% of Wrio/+ mice exhibit phenotypic reversions, i.e., spots of wild-type color on their coats with an otherwise mutant phenotype. Melanocyte cell lines were derived from each of six independent reversion spots on the skin of (C57BL/6 x DBA/2)F1 Wrio/+ mice. All six melanocyte cell lines exhibited the general characteristics common to normal, nonimmortal mouse melanocytes. Of these, three revertant cell lines had lost the dominant-negative Wrio allele following mitotic recombination between the centromere and the W locus. One of the cell lines remained Wrio/+ but showed (i) stimulation in response to SCF and (ii) increased Kit expression, suggesting that the Wrio mutation can be rescued by increased endogenous expression of the c-kit proto-oncogene. Finally, two cell lines showed no detectable genetic change at the W/Kit locus and failed to respond to SCF stimulation in vitro. These results demonstrate that mitotic recombination can create large patches of wild-type hair on the coats of Wrio/+ mutant mice. This shows that mitotic recombination occurs spontaneously in normal healthy tissue in vivo. Moreover, these experiments confirm that other mechanisms, not associated with loss of heterozygosity, may account for the coat color reversion phenotype.  相似文献   

13.
The pulmonary ionizing radiation sensitivity of C57BL/6 Sod2(+/-) mice heterozygous for MnSOD deficiency was compared to that Sod2(+/+) control littermates. Embryo fibroblast cell lines from Sod2(-/-) (neonatal lethal) or Sod2(+/-) mice produced less biochemically active MnSOD and demonstrated a significantly greater in vitro radiosensitivity. No G(2)/M-phase cell cycle arrest after 5 Gy was observed in Sod2(-/-) cells compared to the Sod2(+/-) or Sod2(+/+) lines. Subclonal Sod2(-/-) or Sod2(+/-) embryo fibroblast lines expressing the human SOD2 transgene showed increased biochemical activity of MnSOD and radioresistance. Sod2(+/-) mice receiving 18 Gy whole-lung irradiation died sooner and had an increased percentage of lung with organizing alveolitis between 100 and 160 days compared to Sod2(+/+) wild-type littermates. Both Sod2(+/-) and Sod2(+/+) littermates injected intratracheally with human manganese superoxide dismutase-plasmid/liposome (SOD2-PL) complex 24 h prior to whole-lung irradiation showed decreased DNA strand breaks and improved survival with decreased organizing alveolitis. Thus underexpression of MnSOD in the lungs of heterozygous Sod2(+/-) knockout mice is associated with increased pulmonary radiation sensitivity and parallels increased radiation sensitivity of embryo fibroblast cell lines in vitro. The restoration of cellular radioresistance in vitro and in lungs in vivo by SOD2-PL transgene expression supports a potential role for SOD2-PL gene therapy in organ-specific radioprotection.  相似文献   

14.
Beta(2)-microglobulin (beta(2)m)-derived peptides are minor transplantation Ags in mice as beta(2)m-positive skin grafts (beta(2)m(+/+)) are rejected by genetically beta(2)m-deficient recipient mice (beta(2)m(-/-)). We studied the effector pathways responsible for the rejection induced by beta(2)-microglobulin-derived minor transplantation Ags. The rejection of beta(2)m(+/+) skin grafts by naive beta(2)m(-/-) mice was dependent on both CD4 and CD8 T cells as shown by administration of depleting mAbs. Experiments performed with beta(2)m(-/-)CD8(-/-) double knockout mice grafted with a beta(2)m(+/+) MHC class I-deficient skin showed that sensitized CD4 T cells directed at beta(2)m peptides-MHC class II complexes are sufficient to trigger rapid rejection. Rejection of beta(2)m(+/+) grafts was associated with the production of IL-5 in vitro, the expression of IL-4 and IL-5 mRNAs in the grafted tissue, and the presence within rejected grafts of a considerable eosinophil infiltrate. Blocking IL-4 and IL-5 in vivo and depleting eosinophils with an anti-CCR3 mAb prevented graft eosinophil infiltration and prolonged beta(2)m(+/+) skin graft survival. Lymphocytes from rejecting beta(2)m(-/-) mice also displayed an increased production of IFN-gamma after culture with beta(2)m(+/+) minor alloantigens. In vivo neutralization of IFN-gamma inhibited skin graft rejection. Finally, beta(2)m(+/+) skin grafts harvested from B6(lpr/lpr) donor mice, which lack a functional Fas molecule, survived longer than wild-type beta(2)m(+/+) skin grafts, showing that Fas-Fas ligand interactions are involved in the rejection process. We conclude that IL-4- and IL-5-dependent eosinophilic rejection, IFN-gamma-dependent mechanisms, and Fas-Fas ligand interactions are effector pathways in the acute rejection of minor transplantation Ags.  相似文献   

15.
16.
17.
Peyronie's disease (PD) is characterized by an inflammatory response beneath the tunica albuginea with fibroblast proliferation forming a thickened fibrous plaque that may cause pain, penile curvature and erectile dysfunction. The progression of the PD plaque may eventually lead to calcification or ossification. Current therapeutic success is often unsatisfactory because of limited insight into disease mechanisms. Research has been hampered by the lack of a universally accepted animal model. We describe an animal model of spontaneous PD in tight skin (Tsk) mice, a C57Bl/6J subline that reproduces with age important features of the human disease (fibrous plaque formation, penile bending and areas of chondroid metaplasia with heterotopic ossification). Histological analysis demonstrated an evident structural disorganization of the tunica albuginea with excessive accumulation of type I collagen. At 12 months of age, fibrous plaques with areas of chondroid metaplasia and heterotopic ossification characterized Tsk penises. The up-regulation of hypoxia-inducible factor-1 (HIF-1) leads to an increased downstream expression of HIF-1 target genes, such as TGFbeta and iNOS. These factors, together with some PDGF family members, can cause collagen deposition in Tsk penises. They can also influence chondrocyte differentiation and heterotopic bone formation. In conclusion, hypoxia, HIF-1 and HIF-1 target genes appear to play an important role in the pathogenesis of PD in Tsk mice. This mouse model that is the first example of naturally occurring model of PD in laboratory animals may aid in the identification of signalling pathways crucial for PD and should facilitate the designing and testing of new therapeutic interventions.  相似文献   

18.
SPARC-null mice exhibit accelerated cutaneous wound closure.   总被引:19,自引:0,他引:19  
Expression of SPARC (secreted protein acidic and rich in cysteine; osteonectin, BM-40), an extracellular matrix (ECM) associated protein, is coincident with matrix remodeling. To further identify the functions of SPARC in vivo, we have made excisional wounds on the dorsa of SPARC-null and wild-type mice and monitored closure over time. A significant decrease in the size of the SPARC-null wounds, in comparison to that of wild-type, was observed at Day 4 and was maximal at Day 7. Although substantial differences in the percentage of proliferating cells were not apparent in SPARC-null relative to wild-type wounds, primary cultures of SPARC-null dermal fibroblasts displayed accelerated migration, relative to wild-type fibroblasts, in wound assays in vitro. Although the expression of collagen I mRNA in wounds, as measured by in situ hybridization (ISH), was not significantly different in SPARC-null vs wild-type mice, the collagen content of unwounded skin appeared to be substantially lower in the SPARC-null animals. By hydroxyproline analysis, the concentration of collagen in SPARC-null skin was found to be half that of wild-type skin. Moreover, we found an inverse correlation between the efficiency of collagen gel contraction by dermal fibroblasts and the concentration of collagen within the gel itself. We propose that the accelerated wound closure seen in SPARC-null dermis results from its decreased collagen content, a condition contributing to enhanced contractibility.  相似文献   

19.
20.
Dermal fibroblasts/myofibroblasts involved in the wound healing are thought to originate from the resident fibroblast progenitors. To test the hypothesis of an extra dermal origin of the dermal fibroblasts/myofibroblasts, bone marrow (BM) transplantation and parabiosis experiments were initiated utilizing a collagen promoter green fluorescent protein (GFP) reporter transgene as a visible marker for dermal fibroblasts/myofibroblasts. BM transplantation experiments using BM from Col3.6GFPsapph transgenic mice showed no evidence that BM derived progenitors differentiated into dermal fibroblasts/myofibroblasts at the wound site. Rather the GFP positive cells (GFP+) observed at the wound site were not dermal fibroblasts/myofibroblasts but immune cells. These GFP+ cells were also detected in the lung and spleen. Furthermore, GFP+ fibroblasts were not detected in primary dermal fibroblast cultures initiated from BM chimeras. Using the same transgenic mice, parabiotic pairs were generated. One partner in the parabiosis carried a GFP expressing transgene while the other partner was a non‐transgenic C57BL/6 mouse. Similar to the BM transplantation experiments, GFP+ immune cells were detected in the wound of the non‐transgenic parabiont, however, GFP expressing dermal fibroblasts/myofibroblasts were not observed. Collectively, these data suggest that dermal fibroblast/myofibroblast progenitors do not readily circulate. The expression of the Col3.6GFPsapph in the hematopoietic cells confirmed that our methods were sensitive enough to detect Col3.6GFP expressing dermal fibroblasts derived from the peripheral circulation if they had originated in the BM. J. Cell. Physiol. 222: 703–712, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号