首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2. [BMB Reports 2014; 47(8): 463-468]  相似文献   

2.
3.
Cbfa1/Runx2与成骨细胞分化调控   总被引:9,自引:0,他引:9  
成骨细胞是由间充质干细胞经骨原细胞和前成骨细胞分化而来的。近年来已鉴定转录因子Cbfal(core binding factor α1)是成骨细胞分化和骨形成的关键调控因子。在成骨细胞分化的过程中,Cbfal通过调控成骨细胞特异性细胞外基质蛋白基因的表达和成骨细胞周期参与成骨细胞的分化过程。新近发现Cbfal能通过自身的PST序列区域与Smads结合形成复合物共同参与成骨细胞的分化调控。  相似文献   

4.
5.
6.
7.
This study examined the role of AMPK activation in osteoblast differentiation and the underlining mechanism. An AMPK activator (AICAR or metformin) stimulated osteoblast differentiation with increases in ALP and OC protein production as well as the induction of AMPK phosphorylation in MC3T3E1 cells. In addition, metformin induced the phosphorylation of Smad1/5/8 and expression of Dlx5 and Runx2, whereas compound C or dominant negative AMPK inhibited these effects. Transient transfection studies also showed that metformin increased the BRE-Luc and Runx2-Luc activities, which were inhibited by DN-AMPK or compound C. Down-regulation of Dlx5 expression by siRNA suppressed metformin-induced Runx2 expression. These results suggest that the activation of AMPK stimulates osteoblast differentiation via the regulation of Smad1/5/8-Dlx5-Runx2 signaling pathway.  相似文献   

8.
Muscle satellite cells (SCs) are responsible for muscle homeostasis and regeneration and lncRNAs play important roles in regulating SC activities. Here, in this study, we identify PAM (Pax7 Associated Muscle lncRNA) that is induced in activated/proliferating SCs upon injury to promote SC proliferation as myoblast cells. PAM is generated from a myoblast‐specific super‐enhancer (SE); as a seRNA it binds with a number of target genomic loci predominantly in trans. Further studies demonstrate that it interacts with Ddx5 to tether PAM SE to its inter‐chromosomal targets Timp2 and Vim to activate the gene expression. Lastly, we show that PAM expression is increased in aging SCs, which leads to enhanced inter‐chromosomal interaction and target genes upregulation. Altogether, our findings identify PAM as a previously unknown lncRNA that regulates both SC proliferation and aging through its trans gene regulatory activity.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
The DEAD box proteins encoded by the genes ddx5 (p68) and ddx17 (isoforms p72 and p82) are more closely related to each other than to any other member of their family. We found that p68 negatively controls p72/p82 gene expression but not vice versa. Knocking down of either gene does not affect cell proliferation, in case of p68 suppression, however, only on condition that p72/p82 overexpression was granted. In contrast, co-silencing of both genes causes perturbation of nucleolar structure and cell death. In mutant studies, the apparently redundant role(s) of p68 and p72/p82 correspond to their ability to catalyze RNA rearrangement rather than RNA unwinding reactions. In search for possible physiological targets of this RNA rearrangement activity it is shown that the nucleolytic cleavage of 32S pre-rRNA is reduced after p68 subfamily knock-down, most probably due to a failure in the structural rearrangement process within the pre-60S ribosomal subunit preceding the processing of 32S pre-rRNA.  相似文献   

18.
The importance of flow shear stress (SS) on the differentiation of endothelial progenitor cells (EPCs) has been demonstrated in various studies. Cholesterol retention and microRNA regulation have been also proposed as relevant factors involved in this process, though evidence regarding their regulatory roles in the differentiation of EPCs is currently lacking. In the present study on high shear stress (HSS)-induced differentiation of EPCs, we investigated the importance of ATP-binding cassette transporter 1 (ABCA1), an important regulator in cholesterol efflux, and miR-25-5p, a potential regulator of endothelial reconstruction. We first revealed an inverse correlation between miR-25-5p and ABCA1 expression levels in EPCs under HSS treatment; their direct interaction was subsequently validated by a dual-luciferase reporter assay. Further studies using flow cytometry and quantitative polymerase chain reaction demonstrated that both miR-25-5p overexpression and ABCA1 inhibition led to elevated levels of specific markers of endothelial cells, with concomitant downregulation of smooth muscle cell markers. Finally, knockdown of ABCA1 in EPCs significantly promoted tube formation, which confirmed our conjecture. Our current results suggest that miR-25-5p might regulate the differentiation of EPCs partially through targeting ABCA1, and such a mechanism might account for HSS-induced differentiation of EPCs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号