首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used post-embedding immunocytochemical techniques and affinity-purified anti-actin antibody to evaluate localization of actin in epithelial cells of small intestine by fluorescence and electron microscopy. Small intestine was fixed with 2% formaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M. One-micron or thin sections were stained with antibody followed by rhodamine- or colloidal gold-labeled goat anti-rabbit IgG, respectively. Label was present overlying microvilli, the apical terminal web, and the cytoplasm directly adjacent to occluding and intermediate junctions. Label was associated with outer mitochondrial membranes of all cells and the supranuclear Golgi region of goblet cells. Lateral cytoplasmic interdigitations between mature cells and subplasmalemmal filaments next to intrusive cells were densely labeled. The cytoplasm adjacent to unplicated domains of lateral membrane was focally labeled. Label was prominent over organized filament bundles within the subplasmalemmal web at the base of mature cells, whereas there was focal labeling of the cytoplasm adjacent to the basal membrane of undifferentiated cells. Basolateral epithelial cell processes were labeled. Label was focally present overlying the cellular ground substance. Our results demonstrate that actin is distributed in a distinctive fashion within intestinal epithelial cells. This distribution suggests that in addition to its function as a structural protein, actin may participate in regulation of epithelial tight junction permeability, in motile processes including migration of cells from the crypt to the villus tip, in accommodation of intrusive intraepithelial cells and in adhesion of cells to one another and to their substratum.  相似文献   

2.
Ultrastructural changes in the vaginal epithelium of the rhesus monkey during the menstrual cycle and pregnancy were studied by scanning and transmission electron microscopy. During the menstrual cycle, the epithelium was keratinized but varied in thickness. Cells of the basal and parabasal layers were polyhedral in shape but as they differentiated they accumulated glycogen and filaments. Cells in the intermediate layers had keratohyaline and membrane-coating granules. Cells in the superficial layers had a thickened cell envelope, abundant keratin filaments, electron-dense intercellular material, and focal tight junctions. The epithelial surface had numerous microridges and numerous adherent bacteria; bacteria were rare on desquamating cells. The epithelium remained keratinized for about the first month of gestation, then underwent "mucification." The cells contained abundant granules and Golgi apparatus. Concomitant with this transformation, bacteria were no longer adherent to the epithelial surface and the surface cells had microvilli instead of microridges. The epithelial changes during pregnancy were roughly associated with the changing pattern of steroid hormone secretion during gestation.  相似文献   

3.
Tissues from the epidermis, alimentary tract and notochord of the cephalochordate Branchiostoma lanceolatum have been examined in both thin sections and freeze-fracture replicas to ascertain the nature of the intercellular junctions that characterize their cell borders. The columnar epithelial cells from the branchial chamber (pharynx), as well as from the anterior and posterior intestine, all feature cilia and microvilli on their luminal surfaces. However, their lateral surfaces exhibit zonulae adhaerentes only. No gap junctions have been observed, nor any tight junctions (as are a feature of the gut of urochordates and higher vertebrates), nor unequivocal septate junctions (as are typical of the gut of invertebrates). The basal intercellular borders are likewise held together by zonulae adhaerentes while hemidesmosomes occur along the basal surface where the cells abut against the basal lamina. The lateral cell surfaces, where the adhesive junctions occur, at both luminal and basal borders, do not exhibit any specialized arrangement of intramembrane particles (IMPs), as visualized by freeze-fracture. The IMPs are scattered at random over the cell membranes, being particularly prevalent on the P-face. The only distinctive IMPs arrays are those found on the ciliary shafts in the form of ciliary necklaces and IMP clusters. With regard to these ciliary modifications, cephalochordates closely resemble the cells of the branchial tract of ascidians (urochordates). However, the absence of distinct junctions other than zonulae adhaerentes makes them exceptions to the situation generally encountered in both vertebrates and urochordates, as well as in the invertebrates. Infiltration with tracers such as lanthanum corroborates this finding; the lanthanum fills the extracellular spaces between the cells of the intestine since there are no junctions present to restrict its entry or to act even as a partial barrier. Junctions are likewise absent from the membranes of the notochord; the membranes of its lamellae and vesicles exhibit irregular clusters of IMPs which may be related to the association between the membranes and the notochordal filaments. Epidermis and glial cells from the nervous system possess extensive desmosomal-like associations or zonulae adhaerentes, but no other junctional type is obvious in thin sections, apart from very occasional cross-striations deemed by some previous investigators to represent 'poorly developed' septate junctions.  相似文献   

4.
Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with “stampcils” focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein—fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.  相似文献   

5.
Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with “stampcils” focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein—fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.  相似文献   

6.
Freeze-fracture preparations of the esophagus and intestine of larvae and adults of the nematode Trichinella spiralis illustrate the distribution of intramembranous particles in membranes of a number of cell types, and several specializations were found. Esophageal glands are prominently linked by gap junctions, but gap junctions were not found between intestinal cells. Muscle cells of the esophagus have rectilinear arrays of particles, thought to be points of adherence of the muscles to the esophageal epithelium. Clusters of particles are associated with these arrays and particle-free areas (probably Z bodies) also occur. Intestinal cells have small particles in their microvilli, large particles in the cells' apical membranes, and intermediate size particles, similar to membranes of other cells, in the lateral and basal membranes. Apical smooth septate junctions and tricellular junctions occur between intestinal cells.  相似文献   

7.
Ciliated cells in the rostral epidermis of amphioxus have been serial sectioned and examined in the electron microscope. The cells have a basal axonic process, which can be traced to the subcutaneous nepve-bundles, and hence these cells are primary sensory cells. Apically only the cilium, which takes its origin from an invagination, and a surrounding corolla of microvilli are exposed to the surface. Cross-striated filament bundles closely associate with a basal body and accessory centriole. One such bundle continues into the central part of the cell, while another bundle is attached at the lateral membrane. Between adjoining cells there are apical zonulae adhaerentes, and also poorly developed septate junctions. In addition, a third cell junction is described. Rod-like structures in the surface interdigitations are shown to be continuous with a peripheral layer of microfilaments. The choanocyte-like appearance of the ciliated cells and their resemblance to similar cells in various invertebrates are discussed.  相似文献   

8.
The ultrastructure of the branchial epithelium of the amphibious brackish-water crab Uca mordax (Smith) was investigated in relation to adaptation to the salinity of the medium. No distinct differences were observed in the epithelial structure of animals adapted to either 100% sea water or to 1% sea water. Thus any interpretation of the significance of particular structures in relation to specific transport processes should be regarded with caution. Apart from strict epithelial cells, pillar cells and glycogen (presumed) storage cells were found. The epithelial cells showed very well-developed apical microvilli or lamellae and basal interdigitations with adjacent cells. Well-developed junctional complexes were seen (band desmosomes, septate desmosomes, gap junctions). The cells are extremely rich in mitochondria. Microtubules, peroxisome-like bodies, multivesicular bodies and near-nuclear Golgi complexes were present.  相似文献   

9.
Summary In the pelagic larvacean Oikopleura dioica, the epithelium lining the alimentary tract consists of ciliated and unciliated cell types. The ciliated cells also exhibit an apical border of long microvilli. Between the microvilli, the cellular membrane often projects deeply down into the cytoplasm; the membranes of these invaginations and those of apicolateral interdigitations may be associated with one another by tight junctions. Some of these junctions may be autocellular. The tight junctions are seen by freeze-fracture to be very simple in construction, composed of a single row of intramembranous particles, which may be fused into a P-face ridge. There is a dense cytoplasmic fuzz associated with these tight junctions which may extend into adjoining zonula adhaerens-like regions. The invaginations of the apical membranes are, in addition, associated by gap junctions which may also be autocellular. More conventional homocellular and heterocellular tight and gap junctions occur along the lateral borders of ciliated cells and between ciliated and unciliated cells. These gap junctions possess a reduced intercellular cleft and typical P-face connexons arranged in macular plaques, with complementary E-face pits. Both cell types exhibit extensive stacks of basal and lateral interdigitations. The tight junctions found here are unusual in that they are associated with a dense cytoplasmic fuzz which is normally more characteristic of zonulae adhaerentes.  相似文献   

10.
Podosomes are punctate adhesion structures first described in osteoclasts and next found in src-transformed cells of mesenchymal origin. Podosomes were never observed in cultured epithelial cells where cell-matrix adhesion structures were represented only by focal contacts and hemidesmosomes interacting with microfilaments and intermediate filaments, respectively. Rat bladder carcinoma cells and normal human keratinocytes showed that hemidesmosome-like structures are organized around a core of actin filaments that appears early during cell adhesion and looks similar to those of podosomes described in cells of mesenchymal origin. The epithelial podosome-like structures specifically contain Arp2/3 complex, cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin and zyxin. The maintenance of the F-actin core and the surrounding hemidesmosomes depends on actin polymerization, src family kinases and Grb2, but not on microtubular integrity. Thus, podosomes are not unique to cells of mesenchymal origin, but also appear in epithelial cells where they may take part in regulating basement membrane adhesion.  相似文献   

11.
Focal contacts and hemidesmosomes are cell-matrix adhesion structures of cultured epithelial cells. While focal contacts link the extracellular matrix to microfilaments, hemidesmosomes make connections with intermediate filaments. We have analyzed hemidesmosome assembly in 804G carcinoma cells. Our data show that hemidesmosomes are organized around a core of actin filaments that appears early during cell adhesion. These actin structures look similar to podosomes described in cells of mesenchymal origin. These podosome-like structures are distinct from focal contacts and specifically contain Arp3 (Arp2/3 complex), cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin, and zyxin. We also show that the maintenance of the actin core and hemidesmosomes is dependent on actin polymerization, src-family kinases, and Grb2, but not on microtubules. Video microscopy analysis reveals that assembly of hemidesmosomes is preceded by recruitment of beta4 integrin subunit to the actin core before its positioning at hemidesmosomes. When 804G cells are induced to migrate, actin cores as well as hemidesmosomes disappear and beta4 integrin subunit becomes co-localized with dynamic actin at leading edges. We show that podosome-like structures are not unique to cells of mesenchymal origin, but also appear in epithelial cells, where they seem to be related to basement membrane adhesion.  相似文献   

12.
Terminal webs prepared from mouse intestinal epithelial cells were examined by the quick-freeze, deep-etch, and rotary-replication method. The microvilli of these cells contain actin filaments that extend into the terminal web in compact bundles. Within the terminal web these bundles remain compact; few filaments are separated from the bundles and fewer still bend towards the lateral margins of the cell. Decoration with subfragment 1 (S1) of myosin confirmed that relatively few actin filaments travel horizontally in the web. Instead, between actin bundles there are complicated networks of the fibrils. Here we present two lines of evidence which suggest that myosin is one of the major cross-linkers in the terminal web. First, when brush borders are exposed to 1 mM ATP in 0.3 M KCl, they lose their normal ability to bind antimyosin antibodies as judged by immunofluorescence, and they lose the thin fibrils normally found in deep-etch replicas. Correspondingly, myosin is released into the supernatant as judged by SDS gel electrophoresis. Second, electron microscope immunocytochemistry with antimyosin antibodies followed by ferritin- conjugated second antibodies leads to ferritin deposition mainly on the fibrils at the basal part of rootlets. Deep-etching also reveals that the actin filament bundles are connected to intermediate filaments by another population of cross-linkers that are not extracted by ATP in 0.3 M KCl. From these results we conclude that myosin in the intestinal cell may not only be involved in a short range sliding-filament type of motility, but may also play a purely structural role as a long range cross-linker between microvillar rootlets.  相似文献   

13.
Hemidesmosomes are stable adhesion complexes in basal epithelial cells that provide a link between the intermediate filament network and the extracellular matrix. We have investigated the recruitment of plectin into hemidesmosomes by the alpha6beta4 integrin and have shown that the cytoplasmic domain of the beta4 subunit associates with an NH(2)-terminal fragment of plectin that contains the actin-binding domain (ABD). When expressed in immortalized plectin-deficient keratinocytes from human patients with epidermol- ysis bullosa (EB) simplex with muscular dystrophy (MD-EBS), this fragment is colocalized with alpha6beta4 in basal hemidesmosome-like clusters or associated with F-actin in stress fibers or focal contacts. We used a yeast two-hybrid binding assay in combination with an in vitro dot blot overlay assay to demonstrate that beta4 interacts directly with plectin, and identified a major plectin-binding site on the second fibronectin type III repeat of the beta4 cytoplasmic domain. Mapping of the beta4 and actin-binding sites on plectin showed that the binding sites overlap and are both located in the plectin ABD. Using an in vitro competition assay, we could show that beta4 can compete out the plectin ABD fragment from its association with F-actin. The ability of beta4 to prevent binding of F-actin to plectin explains why F-actin has never been found in association with hemidesmosomes, and provides a molecular mechanism for a switch in plectin localization from actin filaments to basal intermediate filament-anchoring hemidesmosomes when beta4 is expressed. Finally, by mapping of the COOH-terminally located binding site for several different intermediate filament proteins on plectin using yeast two-hybrid assays and cell transfection experiments with MD-EBS keratinocytes, we confirm that plectin interacts with different cytoskeletal networks.  相似文献   

14.
We have tested the requirement of keratin intermediate filaments for the formation and function of a simple epithelium. We disrupted both alleles of the mouse keratin 8 (mK8) gene in embryonic stem cells, and subsequently analyzed the phenotype in developing embryoid bodies in suspension culture. After the inactivation of the mouse keratin 8 (mK8) gene by a targeted insertion, mK8 protein synthesis was undetectable. In the absence of mK8 its complementary partners mK18 and mK19 were unable to form filaments within differentiated cells. Surprisingly, these ES cells differentiate to both simple and cystic embryoid bodies with apparently normal epithelia. Ultrastructural analysis shows an apparently normal epithelium with microvilli on the apical membrane, tight junctions and desmosomes on the lateral membrane, and an underlying basal membrane. No significant differences in the synthesis or secretion of alpha 1-fetoprotein and laminin were observed between the mK8- or wild-type embryoid bodies. Our data show that mK8 is not required for simple epithelium formation of extraembryonic endoderm.  相似文献   

15.
W Honer  H Komnick 《Tissue & cell》1990,22(2):149-155
The cell junctions of the notochord of Xenopus laevis tadpoles were examined with the electron microscope using thin sections, lanthanum tracer experiments, and freeze-fracture replicas. Both the peripheral and vacuolated cells of the notochord are connected by numerous spot desmosomes characterized by an intercellular desmogloea and intermediate filaments on the cytoplasmic sides. The peripheral cells also display numerous hemidesmosomes facing the underlying basal lamina. Staining with rhodamine-phalloidin for F-actin yielded negative results and suggested that adhaerens-type junctions are absent. Tracer experiments with lanthanum and freeze-fracture replicas clearly revealed the presence of gap junctions between both cell types but no indications of tight junctions were found and no intercellular barrier existed for tracer infiltration of the notochord.  相似文献   

16.
The existence of collar cells lining the stomach gastrodermis in free-living Polypodium hydriforme and their ultrastructure are described. The collar cells are provided with a collar consisting of 9–10 microvilli which encircles a central flagellum and forms a flagellar pit. At the bottom of the pit around the basal part of the flagellum there is fine crystalline material which extends also in the spaces between the microvilli and keeps them straight. The flagellum has a typical axoneme (9+2), its basal body is located below the apical surface of the collar cell and continues into a striated rootlet. An accessory centriole is situated close to the upper part of the rootlet. The cell nucleus is located in the basal part of the cell. Prominent mitochondria with tubular cristae, Golgi cisternae and fragments of rough endoplasmic reticulum are situated mostly in the basal part of the cytoplasm. Discoidal vesicles are abundant in the apical cytoplasm. The collar cells are connected to each other by septate junctions and interdigitations. The ultrastructure of collar cells described here is discussed in comparison to that of other Cnidarians and in connection with the problem of Polypodium's systematic position.  相似文献   

17.
In order to understand the cytoskeletal architecture at the terminal web of the ciliated cell, we examined chicken tracheal epithelium by quick-freeze deep-etch (QFDE) electron microscopy combined with immunocytochemistry of fodrin. At the terminal web, the cilia ended into the basal bodies and then to the rootlets. The rootlets were composed of several filaments and globular structures attached regularly to them. Decoration with myosin subfragment 1 (S1) revealed that some actin filaments ran parallel to the apical plasma membrane between the basal bodies, and other population traveled perpendicularly or obliquely, i.e., along the rootlets. Some actin filaments were connected to the surface of the basal bodies and the basal feet. Among the basal bodies and the rootlets there existed three kinds of fine crossbridges, which were not decorated with S1. In the deeper part of the terminal web, intermediate filaments were observed between the rootlets and were sometimes crosslinked with the rootlets. Immunocytochemistry combined with the QFDE method revealed that fodrin was a component of fine crossbridges associated with the basal bodies. We concluded that an extensive crosslinker system among the basal bodies and the rootlets along with networks of actin and intermediate filaments formed a structural basis for the effective beating of cilia.  相似文献   

18.
Summary The larval stage of Polypodium hydriforme is planuliform and parasitic inside the growing oocytes of acipenserid fishes. The larva has inverted germ layers and a special envelope, the trophamnion, surrounding it within the host oocyte. The trophamnion is a giant unicellular provisory structure derived from the second polar body and performing both protective and digestive functions, clearly a result of adaptation to parasitism. The trophamnion displays microvilli on its inner surface, and irregular protrusions anchoring it to the yolk on its outer surface. Its cytoplasm contains long nuclear fragments, ribosomes, mitochondria, microtubules, microfilaments, prominent Golgi bodies, primary lysosomes, and secondary lysosomes with partially digested inclusions.The cells of the larva proper are poorly differentiated. No muscular, glandular, neural, interstitial, or nematocyst-forming cells have been found. The entodermal (outer layer) cells bear flagella and contain rough endoplasmic reticulum; the ectodermal (inner layer) cells lack cilia and contain an apical layer of acid mucopolysaccharid granules. The cells of both layers contain mitochondria, microtubules, and Golgi bodies; their nuclei display large nucleoli with nucleolonema-like structure, decondensed chromatin, and some perichromatin granules. At their apical rims, the ectodermal cells form septate junctions; laterally, the cells of both layers form simple contacts and occasional interdigitations. The lateral surfaces of entodermal cells are strengthened by microtubules.  相似文献   

19.
The terminal web. A reevaluation of its structure and function   总被引:33,自引:29,他引:4  
The apical cytoplasm of epithelial cells of the small and large intestines has been examined by freeze-etch techniques as well as conventional and high voltage electron microscopy of sectioned material to gain a better understanding of the fine structural organization of the terminal web region. In the small intestine the terminal web exhibits a distinct stratification caused by the association of different sets of filaments with the three members of the junctional complex. Individual filaments of this network are closely associated with the sealing elements of the tight junctions, the surface of the core microfilament bundles, and the intermicrovillar plasma membrane. This region of the terminal web is the apical zone. The adherens zone appears as a band of interwoven filaments of two different diameters extending across the cytoplasm at the level of the intermediate junction. Within this region of the terminal web, individual 60-70 A actin-like filaments separate from the bundles of core microfilaments to interact with one another and with filaments of similar diameter from the zonula adherens. 100 A tonofilaments also contribute to the adherens zone, presumably stabilizing the orientation of the actin-like filaments. The basal zone which underlies the adherens zone consists of closely interwoven bundles of tonofilaments that are anchored to and interconnect the spot desmosomes. Within the large intestine the cytoplasmic microfilaments form a looser and less clearly stratified network which nevertheless retains the same basic organization found in the small intestine. Transmembrane linkers appear to originate within the cytoplasmic plaques of the spot desmosomes, pass through the plasma membranes, and meet in a staggered configuration in the intercellular space; these linkers may thus mediate the actual mechanical coupling between the cytoskeletal networks of tonofilament bundles of adjacent cells. This integrated system of cytoplasmic filaments and intercellular junctions endows the apical cytoplasm with both the flexibility and the stability necessary for the normal functioning of the epithelium.  相似文献   

20.
The ultrastructure of the porcine myometrium was studied at well-defined stages of the oestrous cycle by transmission electron microscopy. The fine structure of the myometrium in the pig was found to be similar to that observed in other genital organs and species and did not show obvious variations through the oestrous cycle. The cell-to-cell contacts between smooth-muscle cells most consistently found were intermediate junctions and simple appositions, whereas interdigitations of muscle cell processes were more sparse. Gap junctions were few and small. Nerve terminals possessing presynaptic vesicles typical of the adrenergic and cholinergic type were found, though sparsely, both within and close to muscle bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号