首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding the melatonin-related receptor (GPR50) is highly expressed within hypothalamic nuclei concerned with the control of body weight and metabolism. We screened GPR50 for mutations in an obese cohort and identified an insertion of four amino acid residues (TTGH) at position 501, two common coding polymorphisms (T528A and V602I), and one noncoding polymorphism (C-16X2GPR50T). Single-nucleotide polymorphisms were then typed in 500 English Caucasian subjects, and associations were sought to intermediate obesity phenotypes. Although no association was seen with body mass index, carriers of two copies of the mutant allele at C-16X2GPR50T, Ins501Del, and A1582G had significantly higher fasting circulating triglyceride levels (P < 0.05). In a separate set of 585 subjects, the associations were replicated, with statistically significant effects of similar magnitude and direction. The association of C-16X2GPR50T with fasting triglycerides was highly significant (P < 0.001). In addition, a significant association between C-16X2GPR50T and circulating HDL levels was observed in the combined population, with C-16X2GPR50T carriers having significantly lower circulating HDL-cholesterol levels (1.39 mM) than wild-type subjects (1.47 mM) (P < 0.01). These findings suggest a previously unexpected role for this orphan receptor in the regulation of lipid metabolism that warrants further investigation.  相似文献   

2.
The ability of mammals to maintain a constant body temperature has proven to be a profound evolutionary advantage, allowing members of this class to thrive in most environments on earth. Intriguingly, some mammals employ bouts of deep hypothermia (torpor) to cope with reduced food supply and harsh climates [1, 2]. During torpor, physiological processes such as respiration, cardiac function, and metabolic rate are severely depressed, yet the neural mechanisms that regulate torpor remain unclear [3]. Hypothalamic responses to energy signals, such as leptin, influence the expression of torpor [4-7]. We show that the orphan receptor GPR50 plays an important role in adaptive thermogenesis and torpor. Unlike wild-type mice, Gpr50(-/-) mice readily enter torpor in response to fasting and 2-deoxyglucose administration. Decreased thermogenesis in Gpr50(-/-) mice is not due to a deficit in brown adipose tissue, the principal site of nonshivering thermogenesis in mice [8]. GPR50 is highly expressed in the hypothalamus of several species, including man [9, 10]. In line with this, altered thermoregulation in Gpr50(-/-) mice is associated with attenuated responses to leptin and a suppression of thyrotropin-releasing hormone. Thus, our findings identify hypothalamic circuits involved in torpor and reveal GPR50 to be a novel component of adaptive thermogenesis in mammals.  相似文献   

3.
Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts.  相似文献   

4.
Cyclooxygenase (COX)-2 plays an important role in brain arachidonic acid (20:4n-6) metabolism, and its expression is upregulated in animal models of neuroinflammation and excitotoxicity. Our hypothesis was that brain lipid composition would be altered in COX-2 knockout (COX-2(-/-)) compared with wild-type (COX-2(+/+)) mice, reflecting the important role of COX-2 in brain lipid metabolism. Concentrations of different lipids were measured in high-energy microwaved brain from COX-2(-/-) and COX-2(+/+) mice. Compared with the COX-2(+/+) mouse brain, the brain of the COX-2(-/-) mouse had a statistically significant 15% increase in phosphatidylserine (PtdSer) and significant 37, 27, and 32% reductions in triacylglycerol and cholesterol concentrations and in the cholesterol-to-phospholipid ratio, respectively. The normalized concentration of palmitic acid (16:0) was increased in PtdSer, as was the brain concentration of unesterified arachidic acid (20:0). A lifetime absence of COX-2 produces multiple changes in brain lipid composition. These changes may be related to reported changes in fatty acid kinetics and in resistance to neuroinflammation and excitotoxicity in the COX-2(-/-) mouse.  相似文献   

5.
6.
Brain lipid metabolism in the cPLA2 knockout mouse   总被引:3,自引:0,他引:3  
We examined brain phospholipid metabolism in mice in which the cytosolic phospholipase A(2) (cPLA(2,) Type IV, 85 kDa) was knocked out (cPLA(2)(-/-) mice). Compared with controls, these mice demonstrated altered brain concentrations of several phospholipids, reduced esterified linoleate, arachidonate, and docosahexaenoate in choline glycerophospholipid, and reduced esterified arachidonate in phosphatidylinositol. Unanesthetized cPLA(2)(-/-) mice had reduced rates of incorporation of unlabeled arachidonate from plasma and from the brain arachidonoyl-CoA pool into ethanolamine glycerophospholipid and choline glycerophospholipid, but elevated rates into phosphatidylinositol. These differences corresponded to altered turnover and metabolic loss of esterified brain arachidonate. These results suggests that cPLA(2) is necessary to maintain normal brain concentrations of phospholipids and of their esterified polyunsaturated fatty acids. Reduced esterified arachidonate and docosahexaenoate may account for the resistance of the cPLA(2)(-/-) mouse to middle cerebral artery occlusion, and should influence membrane fluidity, neuroinflammation, signal transduction, and other brain processes.  相似文献   

7.
Sertoli cells express functional receptors for FSH, one of the two pituitary hormones that regulate spermatogenesis in mammals. We recently produced genetic mutant (FORKO) mice that lack FSH receptor, in order to examine the effects on testicular function and fertility. Mutant males exhibited weight loss of testis, epididymis, and seminal vesicle as well as low levels of testosterone. Except for reduced seminiferous tubular diameter, no gross changes were apparent upon histological examination. Analysis of testicular germ cells by flow cytometry revealed a significant increase in the percentage of 2C cells (spermatogonia and non-germ cells) and a significant decrease in the percentage of HC cells (elongated spermatids) of FORKO males. The absolute number of homogenization-resistant elongated spermatids was also significantly reduced in the mutant males. A 2-fold increase in c-kit-positive 2C cells was recorded in the mutant males. Elongated spermatids of FORKO males showed a dramatic increase in propidium iodide binding suggesting reduced nuclear compaction. The increase in size of the sperm head in mutants, as well as susceptibility to dithiothreitol-induced decondensation, suggests the inadequate condensation of sperm chromatin. Sperm chromatin structure assay, a technique that reflects DNA stability, revealed that sperm from FORKO males are susceptible to acid denaturation, indicating the poor quality of sperm. These data allow us to conclude that genetic disruption of FSH receptor signaling in the rodent induces major changes that might contribute to reduced fertility.  相似文献   

8.
Previous studies suggest the hypothesis that apoE produced by adrenocortical cells modulates cellular cholesterol metabolism to enhance the storage of esterified cholesterol (EC) at the expense of cholesterol delivery to the steroidogenic pathway. In the present study, parameters of adrenal cholesterol metabolism and corticosteroid production were examined in wild type and apoE-deficient (apoe(-/-)) mice. Adrenal gland EC content and the EC/free cholesterol (FC) ratio in mice stressed by adrenocorticotropin (ACTH) treatment or saline injection were reduced in apoe(-/-) compared to apoe(+/+) mice. Relative to apoe(+/+) mice, apoE deficiency also resulted in increased levels of plasma corticosterone in the basal state, in response to acute or long-term ACTH treatment, and after a swim-induced neuroendocrine-directed stress test. Measurements of adrenal gland scavenger receptor class B, type I (SR-BI), LDL receptor, and LDL receptor related protein (LRP) levels and the activities of ACAT or HMG-CoA reductase showed no difference between genotypes. Apoe(-/-) and apoe(+/+) mice showed similar quantitative increases in LDL receptors, SR-BI, adrenal weight gain, and ACAT activities in response to ACTH, and both genotypes had similar basal plasma ACTH concentrations. These results suggest that the effects of apoE deficiency reflect events at the level of the adrenal gland and are specific to changes in cholesterol accumulation and corticosterone production. Further, these findings support the hypothesis that apoE acts to enhance adrenocortical EC accumulation and diminish corticosterone production.  相似文献   

9.
The X-chromosomal GPR34 gene encodes an orphan G(i) protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges.  相似文献   

10.
11.
SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor   总被引:1,自引:0,他引:1  
Short chain fatty acids (SCFAs) have recently attracted attention as potential mediators of the effects of gut microbiota on intestinal inflammation. Some of these effects have been suggested to occur through the direct actions of SCFAs on the GPR43 receptor in neutrophils, though the precise role of this receptor in neutrophil activation is still unclear. We show that mouse bone marrow derived neutrophils (BMNs) can chemotax effectively through polycarbonate filters towards a source of acetate, propionate or butyrate. Moreover, we show that BMNs move with good speed and directionality towards a source of propionate in an EZ-Taxiscan chamber coated with fibrinogen. These effects of SCFAs were mimicked by low concentrations of the synthetic GPR43 agonist phenylacetamide-1 and were abolished in GPR43(-/-) BMNs. SCFAs and phenylacetamide-1 also elicited GPR43-dependent activation of PKB, p38 and ERK and these responses were sensitive to pertussis toxin, indicating a role for Gi proteins. Phenylacetamide-1 also elicited rapid and transient activation of Rac1/2 GTPases and phosphorylation of ribosomal protein S6. Genetic and pharmacological intervention identified important roles for PI3Kγ, Rac2, p38 and ERK, but not mTOR, in GPR43-dependent chemotaxis. These results identify GPR43 as a bona fide chemotactic receptor for neutrophils in vitro and start to define important elements in its signal transduction pathways.  相似文献   

12.
Studies showed that nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) agonists produce anxiolytic-like actions, while little is known about the effects of blockade of NOP receptor signaling in anxiety. To this aim, we investigated the behavioral phenotype of NOP receptor gene knockout mice (NOP(-/-)) in different assays. In the elevated plus-maze and light-dark box, NOP(-/-) mice displayed increased anxiety-related behavior. In the novelty-suppressed feeding behavior and elevated T-maze, NOP(-/-) mice showed anxiolytic-like phenotype, while no differences were found in the open-field, hole-board, marble-burying, and stress-induced hyperthermia. Altogether, these findings suggest that the N/OFQ-NOP receptor system modulates anxiety-related behavior in a complex manner.  相似文献   

13.
14.
Targeted disruption of exon 9 of the cyp19 gene gives rise to a non-functional aromatase enzyme incapable of converting androgens to oestrogens. The aromatase knockout (ArKO) mouse is, thus, characterised by a dysfunctional pituitary-gonadal axis, which manifests in non-detectable levels of oestrogen in serum. These mice also exhibit elevated levels of circulating gonadotrophins (luteinising hormone (LH) and follicle stimulating hormone (FSH)) and testosterone. The ArKO mouse is infertile due to folliculogenic disruption and a failure to ovulate. The age-dependent ovarian phenotype revealed a block in follicular development at the antral stage and a complete absence of corpora lutea. By 21–23 weeks of age haemorrhagic cystic follicles were present and by 1 year there were abnormal follicles, an absence of secondary and antral follicles and atretic primary follicles. Interstitial tissue remodelling was extensive and exemplified by an increase in collagen deposition and an influx of macrophages, coincident with the loss of follicles. In mice, maintained on a soy-free and, thus, phytoestrogen-free diet, the ovarian phenotype was accelerated and exacerbated. In conclusion, the ovarian phenotype of the ArKO mouse can be attributed to the altered hormonal environment brought about by the absence of aromatase and the failure of androgens to be converted to oestrogens in the presence of elevated gonadotropins.  相似文献   

15.
16.
One-third of the approximately 400 nonodorant G protein-coupled receptors (GPCRs) are still orphans. Although a considerable number of these receptors are likely to transduce cellular signals in response to ligands that remain to be identified, they may also have ligand-independent functions. Several members of the GPCR family have been shown to modulate the function of other receptors through heterodimerization. We show that GPR50, an orphan GPCR, heterodimerizes constitutively and specifically with MT(1) and MT(2) melatonin receptors, using biochemical and biophysical approaches in intact cells. Whereas the association between GPR50 and MT(2) did not modify MT(2) function, GPR50 abolished high-affinity agonist binding and G protein coupling to the MT(1) protomer engaged in the heterodimer. Deletion of the large C-terminal tail of GPR50 suppressed the inhibitory effect of GPR50 on MT(1) without affecting heterodimerization, indicating that this domain regulates the interaction of regulatory proteins to MT(1). Pairing orphan GPCRs to potential heterodimerization partners might be of clinical importance and may become a general strategy to better understand the function of orphan GPCRs.  相似文献   

17.
In the highly organized and complex process of mammalian spermatogenesis, the development of an undifferentiated diploid germ cell into a fully differentiated and mature spermatozoon is orchestrated in a time frame unique for each species including man. If the various hormonal signals including environmental cues that play a critical part in initiating these events are not properly executed, various deficiencies including delay in sexual maturity or puberty are likely. In this study we have followed testicular development and spermatogenesis in the FSH receptor knockout (FORKO) mice from Day 7 onward by using histology and quantitative DNA flow cytometry. The drastic reduction in testicular weight and shrinkage of seminiferous tubules that occurred at this early age persisted into the adult stage in the FORKOs, suggesting inhibition of the initial developmental processes. The round spermatids that were clearly abundant on Day 21 in the wild-type and heterozygous males were few and present only in some tubules of the FORKOs. There were no elongated spermatids in FORKO males on Day 35. The sperm produced by Day 49 FORKOs were already aberrant, a feature that persisted into adulthood in these animals. As all these changes occurred in a background of normal circulating testosterone levels, we may conclude that the delay in testicular development is a consequence of the loss of FSH-receptor signaling. The delay in sexual maturity of FORKOs was accompanied by reduction in fertility as evidenced by mating studies. Based on these data we suggest that the FORKO mouse might be a useful experimental model to define the molecular mechanisms that underlie the delay in puberty.  相似文献   

18.
The loss of fragile X mental retardation (FMR1) gene function causes fragile X syndrome (FXS), a common mental retardation syndrome. Anxiety and abnormal social behaviors are prominent features of FXS in humans. To better understand the role of FMR1 in these behaviors, we analyzed anxiety-related and social behaviors in Fmr1 knockout (KO) mice. In the mirrored chamber test, Fmr1 KO mice showed greater aversion to the central mirrored chamber than wild-type (WT) littermates, suggesting increased anxiety-like responses to reflected images of mice. Fmr1 KO mice exhibited abnormal social interactions in a tube test of social dominance, winning fewer matches than WT littermates. In a partition test, Fmr1 KO mice had normal levels of social interest and social recognition. However, during direct interaction tests, Fmr1 KO mice showed significant increases in sniffing behaviors. We further tested the influence of environmental familiarity on the social responses of Fmr1 KO mice to unfamiliar partners. In unfamiliar partitioned cages, Fmr1 KO mice did not differ from WT mice in investigation of unfamiliar partners. However, in familiar partitioned cages, Fmr1 KO mice showed less investigation of a newly introduced partner during the first 5 min and more investigation during the last 5 min of a 20-min partition test, behaviors consistent with initial social anxiety followed by enhanced social investigation. Our findings indicate that the loss of Fmr1 gene function results in altered anxiety and social behavior in mice and demonstrate that the Fmr1 KO mouse is a relevant animal model for the abnormal social responses seen in FXS.  相似文献   

19.
To meet the high-energy demands of photoreceptor cells, the outer retina metabolizes glucose through glycolytic and oxidative pathways, resulting in large-scale production of lactate and CO(2). Mct3, a proton-coupled monocarboxylate transporter, is critically positioned to facilitate transport of lactate and H(+) out of the retina and could therefore play a role in pH and ion homeostasis of the outer retina. Mct3 is preferentially expressed in the basolateral membrane of the retinal pigment epithelium and forms a heteromeric complex with the accessory protein CD147. To examine the physiological role of Mct3 in the retina, we generated mice with a targeted deletion in Mct3 (slc16A8). The overall retinal histology of 4- to 36-wk-old Mct3(-/-) mice appeared normal. In the absence of Mct3, expression of CD147 was lost from the basolateral but not apical RPE. The saturated a-wave amplitude (a(max)) of the scotopic electroretinogram (ERG) was reduced by approximately twofold in Mct3(-/-) mice relative to wild-type mice. A fourfold increase in lactate in the retina suggested a decrease in outer-retinal pH. In single-cell recordings from superfused retinal slices, saturating amplitudes of single rod photocurrents (J(max)) were comparable indicating that Mct3(-/-) mouse photoreceptor cells were inherently healthy. Based on these data, we hypothesize that disruption of Mct3 leads to a potentially reversible decrease in subretinal space pH, thereby reducing the magnitude of the light suppressible photoreceptor current.  相似文献   

20.
The repeated epilation (Er) mutation in mice causes successive loss and regrowth of hair in heterozygotes (Er/+), and blocks orofacial development and epidermal differentiation in lethal homozygotes (Er/Er). Because the mutation affects a systemic factor, because the Er phenotypes resemble exposure to excess retinoids and because retinoids are critical regulators of epithelial differentiation, we examined whether systemic retinoid levels are altered by the Er defect. Liver retinoic acid and retinol were elevated 1.5- and 3.5-fold, respectively, in adult heterozygotes (Er/+) compared to normal (+/+) animals. Retinyl palmitate was increased 2-fold in heterozygous skin and 3-fold in kidney, but the retinol level in plasma was only half that of normal animals. Newborn heterozygous liver also had nearly 2-fold increased retinoids compared to normal. In contrast, Er/Er newborns had reduced retinoid levels in liver, two-thirds the retinol and 15% the retinyl palmitate compared to normal, but greater than 4-fold elevated levels of retinyl palmitate in the extrahepatic body. Tissue contents of retinol binding protein (RBP), which transports vitamin A from the liver to the remainder of the body, were determined by immunoblotting with anti-mouse RBP. Newborn normal and mutant animals had similar liver microsomal RBP contents. RBP contents in plasma and in liver microsomes were also similar in normal and Er/+ adults despite different retinol contents in the Er/+ tissues. Hair follicles of the Er/+, but not the normal adult, were stained with this antiserum to RPB in the outer root sheath layer. These results strongly suggest that altered retinoid distribution is associated with, and may be responsible for, the altered epithelial differentiation in the Er mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号