首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Episodic ataxia type 2 (EA2) is an inherited autosomal dominant disorder related to cerebellar dysfunction and is associated with mutations in the pore-forming 1A-subunits of human P/Q-type Ca2+ channels (Cav2.1 channels). The majority of EA2 mutations result in significant loss-of-function phenotypes. Whether EA2 mutants may display dominant-negative effects in human, however, remains controversial. To address this issue, five EA2 mutants in the long isoform of human 1A-subunits were expressed in Xenopus oocytes to explore their potential dominant-negative effects. Upon coexpressing the cRNA of 1A-WT with each 1A-mutant in molar ratios ranging from 1:1 to 1:10, the amplitude of Ba2+ currents through wild-type (WT)-Cav2.1 channels decreased significantly as the relative molar ratio of 1A-mutants increased, suggesting the presence of an 1A-mutant-specific suppression effect. When we coexpressed 1A-WT with proteins not known to interact with Cav2.1 channels, we observed no significant suppression effects. Furthermore, increasing the amount of auxiliary subunits resulted in partial reversal of the suppression effects in nonsense but not missense EA2 mutants. On the other hand, when we repeated the same coinjection experiments of 1A-WT and mutant using a splice variant of 1A-subunit that contained a considerably shorter COOH terminus (i.e., the short isoform), no significant dominant-negative effects were noted until we enhanced the relative molar ratio to 1:10. Altogether, these results indicate that for human WT-Cav2.1 channels comprising the long-1A-subunit isoform, both missense and nonsense EA2 mutants indeed display prominent dominant-negative effects. channelopathy; voltage clamp; Xenopus oocytes; cerebellum; splice variants  相似文献   

2.
We have investigated the functional consequences of three P/Q-type Ca(2+) channel alpha1A (Ca(v)2.1alpha(1)) subunit mutations associated with different forms of ataxia (episodic ataxia type 2 (EA-2), R1279Stop, AY1593/1594D; progressive ataxia (PA), G293R). Mutations were introduced into human alpha1A cDNA and heterologously expressed in Xenopus oocytes or tsA-201 cells (with alpha(2)delta and beta1a) for electrophysiological and biochemical analysis. G293R reduced current density in both expression systems without changing single channel conductance. R1279Stop and AY1593/1594D protein were expressed in tsA-201 cells but failed to yield inward barium currents (I(Ba)). However, AY1593/1594D mediated I(Ba) when expressed in oocytes. G293R and AY1593/1594D shifted the current-voltage relationship to more positive potentials and enhanced inactivation during depolarizing pulses (3 s) and pulse trains (100 ms, 1 Hz). Mutation AY1593/1594D also slowed recovery from inactivation. Single channel recordings revealed a change in fast channel gating for G293R evident as a decrease in the mean open time. Our data support the hypothesis that a pronounced loss of P/Q-type Ca(2+) channel function underlies the pathophysiology of EA-2 and PA. In contrast to other EA-2 mutations, AY1593/1594D and G293R form at least partially functional channels.  相似文献   

3.
The RGK family of monomeric GTP-binding proteins potently inhibits high voltage-activated Ca(2+) channels. The molecular mechanisms of this inhibition are largely unclear. In Xenopus oocytes, Gem suppresses the activity of P/Q-type Ca(2+) channels on the plasma membrane. This is presumed to occur through direct interactions of one or more Gem inhibitory sites and the pore-forming Ca(v)2.1 subunit in a manner dependent on the Ca(2+) channel subunit β (Ca(v)β). In this study we investigated the molecular determinants in Gem that are critical for this inhibition. Like other RGK proteins, Gem contains a conserved Ras-like core and extended N and C termini. A 12-amino acid fragment in the C terminus was found to be crucial for and sufficient to produce Ca(v)β-dependent inhibition, suggesting that this region forms an inhibitory site. A three-amino acid motif in the core was also found to be critical, possibly forming another inhibitory site. Mutating either site individually did not hamper Gem inhibition, but mutating both sites together completely abolished Gem inhibition without affecting Gem protein expression level or disrupting Gem interaction with Ca(v)2.1 or Ca(v)β. Mutating Gem residues that are crucial for interactions with previously demonstrated RGK modulators such as calmodulin, 14-3-3, and phosphatidylinositol lipids did not significantly affect Gem inhibition. These results suggest that Gem contains two candidate inhibitory sites, each capable of producing full inhibition of P/Q-type Ca(2+) channels.  相似文献   

4.
Gain-of-function mutations in CaV 2.1 (P/Q-type) Ca2+ channels cause familial hemiplegic migraine type 1 (FHM1), a subtype of migraine with aura. Knockin (KI) mice carrying FHM1 mutations show increased neuronal P/Q-type current and facilitation of induction and propagation of cortical spreading depression (CSD), the phenomenon that underlies migraine aura and may activate migraine headache mechanisms. We recently studied cortical neurotransmission in neuronal microcultures and brain slices of FHM1 KI mice, and showed (1) gain-of-function of excitatory neurotransmission, due to increased action potential-evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at fast-spiking interneuron synapses, and (2) a causative link between enhanced glutamate release and facilitation of CSD induced by brief pulses of high K+ in cortical slices. Here, we show that after blockade of either the P/Q-type Ca2+ channels or the NMDA receptors, CSD cannot be induced in wild-type mouse cortical slices. In contrast, blockade of N- or R-type Ca2+ channels has only a small inhibitory effect on CSD threshold and velocity of propagation. Our findings support a model in which Ca2+ influx through presynaptic P/Q-type Ca2+ channels with consequent release of glutamate from recurrent cortical pyramidal cell synapses and activation of NMDA receptors are required for initiation and propagation of the CSD involved in migraine.  相似文献   

5.
Since cannabinoid receptors inhibit excitatory synaptic transmission by reducing glutamate release, we have examined whether this might occur through the direct inhibition of presynaptic Ca2+ channels. In cerebrocortical nerve terminals, activation of cannabinoid receptors with WIN55,212-2 reduces the KCl-evoked release of glutamate. However, this inhibition is attenuated when N- and P/Q-type Ca2+ channels are blocked. Through Ca2+ imaging in single nerve terminals, we found that WIN55,212-2 reduced the influx of Ca2+ both in nerve terminals that contain N-type Ca2+ channels and those that contain P/Q-type Ca2+ channels. Thus, cannabinoid receptors modulate the two major Ca2+ channels coupled to glutamate release in the cerebral cortex.  相似文献   

6.
Ca2+ influx through voltage-gated Ca2+ channels mediates synaptic transmission at numerous central synapses. However, electrophysiological and pharmacological evidence linking Ca+ channel activity with neurotransmitter release in the vertebrate mature spinal cord is scarce. In the current report, we investigated in a slice preparation from the adult turtle spinal cord, the effects of various Ca+ channel antagonists on neurotransmission at terminals from the dorsolateral funiculus synapsing motoneurons. Bath application of tetrodotoxin or NiCl2 prevented the monosynaptic excitatory postsynaptic potentials (EPSPs), and this effect was mimicked by exposure to a zero-Ca2+ solution. Application of polypeptide toxins that block N- and P/Q-type channels (omega-CTx-GVIA and omega-Aga-IVA) reduced the EPSP amplitude in a dose-dependent manner. By analyzing the input resistance and the EPSP time course, and using a paired pulse protocol we determined that both toxins act at presynaptic level to modulate neurotransmitter release. RT-PCR studies showed the expression of N- and P/Q-type channel mRNAs in the turtle spinal cord. Together, these results indicate that N- and P/Q-type Ca2+ channels may play a central role in the regulation of neurotransmitter release in the adult turtle spinal cord.  相似文献   

7.
In common with many neurons, adrenal chromaffin cells possess distinct voltage-dependent and voltage-independent pathways for Ca(2+) channel regulation. In this study, the voltage-independent pathway was revealed by addition of naloxone and suramin to remove tonic blockade of Ca(2+) currents via opioid and purinergic receptors due to autocrine feedback inhibition. This pathway requires the Ca(2+)-binding protein neuronal calcium sensor-1 (NCS-1). The voltage-dependent pathway was pertussis toxin-sensitive, whereas the voltage-independent pathway was largely pertussis toxin-insensitive. Characterization of the voltage-independent inhibition of Ca(2+) currents revealed that it did not involve protein kinase C-dependent signaling pathways but did require the activity of a Src family tyrosine kinase. Two structurally distinct Src kinase inhibitors, 4-amino-5-(4-methylphenyl)7-(t-butyl)pyrazolo[3,4-d] pyrimidine (PP1) and a Src inhibitory peptide, increased the Ca(2+) currents, and no further increase in Ca(2+) currents was elicited by addition of naloxone and suramin. In addition, the Src-like kinase appeared to act in the same pathway as NCS-1. In contrast, addition of PP1 did not prevent a voltage-dependent facilitation elicited by a strong pre-pulse depolarization indicating that this pathway was independent of Src kinase activity. PPI no longer increased Ca(2+) currents after addition of the P/Q-type channel blocker omega-agatoxin TK. The alpha(1A) subunit of P/Q-type Ca(2+) channels was immunoprecipitated from chromaffin cell extracts and found to be phosphorylated in a PP1-sensitive manner by endogenous kinases in the immunoprecipitate. A high molecular mass (around 220 kDa) form of the alpha(1A) subunit was detected by anti-phosphotyrosine, suggesting a possible target for Src family kinase action. These data demonstrate a voltage-independent mechanism for autocrine inhibition of P/Q-type Ca(2+) channel currents in chromaffin cells that requires Src family kinase activity and suggests that this may be a widely distributed pathway for Ca(2+) channel regulation.  相似文献   

8.
9.
Neuropoietic cytokines such as ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) stimulate the functional expression of T-type Ca(2+) channels in developing sensory neurons. However, the molecular and cellular mechanisms involved in the cytokine-evoked membrane expression of T-type Ca(2+) channels are not fully understood. In this study we investigated the role of LIF in promoting the trafficking of T-type Ca(2+) channels in a heterologous expression system. Our results demonstrate that transfection of HEK-293 cells with the rat green fluorescent protein (GFP)-tagged T-type Ca(2+) channel α(1H)-subunit resulted in the generation of transient Ca(2+) currents. Overnight treatment of α(1H)-GFP-transfected cells with LIF caused a significant increase in the functional expression of T-type Ca(2+) channels as indicated by changes in current density. LIF also evoked a significant increase in membrane fluorescence compared with untreated cells. Disruption of the Golgi apparatus with brefeldin A inhibited the stimulatory effect of LIF, indicating that protein trafficking regulates the functional expression of T-type Ca(2+) channels. Trafficking of α(1H)-GFP was also disrupted by cotransfection of HEK-293 cells with the dominant-negative form of ADP-ribosylation factor (ARF)1 but not ARF6, suggesting that ARF1 regulates the LIF-evoked membrane trafficking of α(1H)-GFP subunits. Trafficking of T-type Ca(2+) channels required transient activation of the JAK and ERK signaling pathways since stimulation of HEK-293 cells with LIF evoked a considerable increase in the phosphorylation of the downstream JAK targets STAT3 and ERK. Pretreatment of HEK-293 cells with the JAK inhibitor P6 or the ERK inhibitor U0126 blocked ERK phosphorylation. Both P6 and U0126 also inhibited the stimulatory effect of LIF on T-type Ca(2+) channel expression. These findings demonstrate that cytokines like LIF promote the trafficking of T-type Ca(2+) channels.  相似文献   

10.
P/Q-type Ca(2+) channels, which are postulated to play major roles in synaptic transmission, are regulated in a variety of ways. Ca(2+) currents through P/Q-type Ca(2+) channels (Ca(v)2.1/beta(1a)/alpha(2)delta) heterologously expressed in mammalian cells were recorded using the whole-cell patch clamp method. The oxidant H(2)O(2) increased the current amplitude and the effect was reversed by the reducing agent dithiothreitol (DTT). The stimulatory effect of H(2)O(2) on the Ca(2+) current was mimicked by the NO donors, SNAP, and diethylamine NONOate, and reversed by the reducing agent DTT. The presence of a soluble guanylate cyclase inhibitor did not abolish the ability of SNAP to increase the Ca(2+) current. Adenovirus-mediated overexpression of nitric oxide synthase in combination with application of the Ca(2+) ionophore A23187 also increased the Ca(2+) current amplitude and the effect was again reversed by DTT. The NOS inhibitor L-NAME abolished the stimulatory effect of A23187, and A23187 did not change the Ca(2+) currents in the cells treated with control adenovirus particles. The time course of the decline of the Ca(2+) current, but not of the Ba(2+) current, in response to repeated depolarization was markedly slowed by adenovirus-mediated overexpression of nitric oxide synthase. The results demonstrate that nitric oxide enhances the channel activity by promoting oxidation and suggest that Ca(2+), nitric oxide synthase, and nitric oxide could constitute a positive feedback loop for regulation of voltage-gated P/Q-type Ca(2+) channels.  相似文献   

11.
Regulation of organellar fusion and fission by Ca2+ has emerged as a central paradigm in intracellular membrane traffic. Originally formulated for Ca2+-driven SNARE-mediated exocytosis in the presynaptic terminals, it was later expanded to explain membrane traffic in other exocytic events within the endo-lysosomal system. The list of processes and conditions that depend on the intracellular membrane traffic includes aging, antigen and lipid processing, growth factor signaling and enzyme secretion. Characterization of the ion channels that regulate intracellular membrane fusion and fission promises novel pharmacological approaches in these processes when their function becomes aberrant. The recent identification of Ca2+ permeability through the intracellular ion channels comprising the mucolipin (TRPMLs) and the two-pore channels (TPCs) families pinpoints the candidates for the Ca2+ channel that drive intracellular membrane traffic. The present review summarizes the recent developments and the current questions relevant to this topic.  相似文献   

12.
Recently, we reported indirect evidence that plasma membrane Ca2+-ATPase (PMCA) can mediate B-type Ca2+ channels of cardiac myocytes. In the present study, in order to bring more direct evidence, purified PMCA from human red blood cells (RBC) was reconstituted into giant azolectin liposomes amenable to the patch-clamp technique. Purified RBC PMCA was used because it is available pure in larger quantity than cardiac PMCA. The presence of B-type Ca2+ channels was first investigated in native membranes of human RBC. They were detected and share the characteristics of cardiac myocytes. They spontaneously appeared in scarce short bursts of activity, they were activated by chlorpromazine (CPZ) with an EC50 of 149 mmole/l or 1 mmole/l vanadate, and then switched off by 10 mmole/l eosin or dose-dependently blocked by 1-5 mmole/l ATP. Independent of membrane potential, the channel gating exhibited complex patterns of many conductance levels, with three most often observed conductance levels of 22, 47 and 80 pS. The activation by vanadate suggests that these channels could play a role in the influx of extracellular Ca2+ involved in the vanadate-induced Gardos effect. In PMCA-reconstituted proteoliposomes, nearly half of the ATPase activity was retained and clear "channel-like" openings of Ba2+- or Ca2+-conducting channels were detected. Channel activity could be spontaneously present, lasting the patch lifetime or, when previously quiescent, activity could be induced by application of 50 mmole/l CPZ only in presence of 25 U/ml calmodulin (CaM), or by application of 1 mmole/l vanadate alone. Eosin (10 mmole/l) and ATP (5 mmole/l) significantly reduced spontaneous activity. Channel gating characteristics were similar to those of RBC, with main conductance levels of 21, 40 and 72 pS. The lack of direct activation by CPZ alone might be attributed to a purification-induced modification or absence of unidentified regulatory component(s) of PMCA. Despite a few differences in results between RBC and reincorporated PMCA, most probably attributable to the decrease in ATPase activity following the procedure of reincorporation, the present experimental conditions appear to reveal a channel-mode of the PMCA that shares many similarities with the B-type Ca2+ channel.  相似文献   

13.
Regulation of organellar fusion and fission by Ca2+ has emerged as a central paradigm in intracellular membrane traffic. Originally formulated for Ca2+-driven SNARE-mediated exocytosis in the presynaptic terminals, it was later expanded to explain membrane traffic in other exocytic events within the endo-lysosomal system. The list of processes and conditions that depend on the intracellular membrane traffic includes aging, antigen and lipid processing, growth factor signaling and enzyme secretion. Characterization of the ion channels that regulate intracellular membrane fusion and fission promises novel pharmacological approaches in these processes when their function becomes aberrant. The recent identification of Ca2+ permeability through the intracellular ion channels comprising the mucolipin (TRPMLs) and the two-pore channels (TPCs) families pinpoints the candidates for the Ca2+ channel that drive intracellular membrane traffic. The present review summarizes the recent developments and the current questions relevant to this topic.  相似文献   

14.
Calmodulin (CaM) regulates gating of several types of ion channels but has not been implicated in channel assembly or trafficking. For the SK4/IK1 K+ channel, CaM bound to the proximal C terminus ("Ct1 " domain) acts as the Ca2+ sensor. We now show that CaM interacting with the C terminus of SK4 also controls channel assembly and surface expression. In transfected cells, removing free CaM by overexpressing the CaM-binding domain, Ct1, redistributed full-length SK4 protein from the plasma membrane to the cytoplasm and decreased whole-cell currents. Making more CaM protein available by overexpressing the CaM gene abrogated the dominant-negative effect of Ct1 and restored both surface expression of SK4 protein and whole-cell currents. The distal C-terminal domain ("Ct2") also plays a role in assembly, but is not CaM-dependent. Co-immunoprecipitation experiments demonstrated that multimerization of SK4 subunits was enhanced by CaM and inhibited by removal of CaM, indicating that CaM regulates trafficking of SK4 by affecting the assembly of channels. Our results support a model in which CaM-dependent association of SK4 monomers at their Ct1 domains regulates channel assembly and surface expression. This appears to represent a novel mechanism for controlling ion channels, and consequently, the cellular functions that depend on them.  相似文献   

15.
Mutations in P/Q-type calcium channels generate common phenotypes in mice and humans, which are characterized by ataxia, paroxysmal dyskinesia, and absence seizures. Subsequent functional changes of T-type calcium channels in thalamus are observed in P/Q-type calcium channel mutant mice and these changes play important roles in generation of absence seizures. However, the changes in T-type calcium channel function and/or expression in the cerebellum, which may be related to movement disorders, are still unknown. The leaner mouse exhibits severe ataxia, paroxysmal dyskinesia, and absence epilepsy due to a P/Q-type calcium channel mutation. We investigated changes in T-type calcium channel expression in the leaner mouse thalamus and cerebellum using quantitative real-time polymerase chain reaction (qRT-PCR) and quantitative in situ hybridization histochemistry (ISHH). qRT-PCR analysis showed no change in T-type calcium channel alpha 1G subunit (Cav3.1) expression in the leaner thalamus, but a significant decrease in alpha 1G expression in the whole leaner mouse cerebellum. Interestingly, quantitative ISHH revealed differential changes in alpha 1G expression in the leaner cerebellum, where the granule cell layer showed decreased alpha 1G expression while Purkinje cells showed increased alpha 1G expression. To confirm these observations, the granule cell layer and the Purkinje cell layer were laser capture microdissected separately, then analyzed with qRT-PCR. Similar to the observation obtained by ISHH, the leaner granule cell layer showed decreased alpha 1G expression and the leaner Purkinje cell layer showed increased alpha 1G expression. These results suggest that differential expression of T-type calcium channels in the leaner cerebellum may be involved in the observed movement disorders.  相似文献   

16.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

17.
The cytoplasmic beta subunit of voltage-dependent calcium channels modulates channel properties in a subtype-specific manner and is important in channel targeting. A high affinity interaction site between the alpha1 interaction domain (AID) in the I-II cytoplasmic loop of alpha1 and the beta interaction domain (BID) of the beta subunit is highly conserved among subunit subtypes. We describe a new subtype-specific interaction (Ss1) between the amino-terminal cytoplasmic domain of alpha1A (BI-2) and the carboxyl terminus of beta4. Like the interaction identified previously () between the carboxyl termini of alpha1A and beta4 (Ss2), the affinity of this interaction is lower than AID-BID, suggesting that these are secondary interactions. Ss1 and Ss2 involve overlapping sites on beta4 and are competitive, but neither inhibits the interaction with AID. The interaction with the amino terminus of alpha1 is isoform-dependent, suggesting a role in the specificity of alpha1-beta pairing. Coexpression of beta4 in Xenopus oocytes produces a reduced hyperpolarizing shift in the I-V curve of the alpha1A channel compared with beta3 (not exhibiting this interaction). Replacing the amino terminus of alpha1A with that of alpha1C abolishes this difference. Our data contribute to our understanding of the molecular organization of calcium channels, providing a functional basis for variation in subunit composition of native P/Q-type channels.  相似文献   

18.
In the mammalian taste bud, the heterogeneous cell population includes three morphologically distinct types of cells, type I to type III, which are also different in their electrophysiological features. Particularly, voltage-gated (VG) Ca2+ channels are functional solely in taste cells of the type III. These channels were studied here with external Ba2+ ions as current carriers. It was specifically shown that VG Ba2+ currents were almost completely blockable with nifedipine as well as with ionic blockers, such as Cd2+, Ni2+, and Co2+. Kinetic properties of VG Ba2+ currents in type III cells and their sensitivity to the blockers indicated that these currents were largely mediated by VG Ca2+ channels of the L-type. The expression of genes, which encode pore-forming α1-subunits of Ca2+ channels, was analyzed using methods of molecular biology. Among four genes encoding L-type Ca2+ channel α1-subunits (Ca ν 1.1-Ca ν 1.4), the expression of Ca ν 1.2 was demonstrated in taste cells.  相似文献   

19.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号