首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Akar T  Tunali S 《Bioresource technology》2006,97(15):1780-1787
The Pb(II) and Cu(II) biosorption characteristics of Aspergillus flavus fungal biomass were examined as a function of initial pH, contact time and initial metal ion concentration. Heat inactivated (killed) biomass was used in the determination of optimum conditions before investigating the performance of pretreated biosorbent. The maximum biosorption values were found to be 13.46 +/- 0.99 mg/g for Pb(II) and 10.82 +/- 1.46 mg/g for Cu(II) at pH 5.0 +/- 0.1 with an equilibrium time of 2 h. Detergent, sodium hydroxide and dimethyl sulfoxide pretreatments enhanced the biosorption capacity of biomass in comparison with the heat inactivated biomass. The biosorption data obtained under the optimum conditions were well described by the Freundlich isotherm model. Competitive biosorption of Pb(II) and Cu(II) ions was also investigated to determine the selectivity of the biomass. The results indicated that A. flavus is a suitable biosorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution.  相似文献   

2.
Biosorption is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using live, inactive and dead biomasses such as algae, bacteria and fungi. In this study, live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was applied as heavy metal adsorbent material. Biosorption of copper(II) cations in aqueous solution by live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was investigated to study the effects of initial heavy metal concentration, pH, temperature, contact time, agitation rate and amount of fungus. Copper(II) was taken up quickly by fungal biomass (live or dried) during the first 15 min and the most important factor which affected the copper adsorption by live and dried biomass was the pH value. An initial pH of around 5.0 allowed for an optimum adsorption performance. Live biomass of two white rot fungi showed a high copper adsorption capacity compared with dried biomass. Copper(II) uptake was found to be independent of temperature in the range of 20–45 °C. The initial metal ion concentration (10–300 mg/L) significantly influenced the biosorption capacity of these fungi. The results indicate that a biosorption as high as 40–60 % by live and dried biomass can be obtained under optimum conditions.  相似文献   

3.
The removal of Cu(II) from aqueous solutions by Ulothrix zonata   总被引:3,自引:0,他引:3  
In this work, adsorption of copper(II) ions on alga has been studied by using batch adsorption techniques. The equilibrium biosorption level was determined as a function of contact time at several initial metal ion concentrations. The effect of adsorbent concentration on the amount adsorbed was also investigated. The experimental adsorption data were fitted to the Langmuir adsorption model. The free energy change (deltaG0) for the adsorption process was found to be -12.60 kJ/mol. The results indicated that the biomass of Ulothrix zonata is a suitable biosorbent for both the removal and recovery of heavy metals from wastewater.  相似文献   

4.
Biosorption of Cu(II) ions onto pre-treated powdered waste sludge (PWS) was investigated using a fed-batch operated completely mixed reactor. Fed-batch adsorption experiments were performed by varying the feed flow rate ( 0.075-0.325 l h(-1)), feed copper (II) ion concentrations (50-300 mg l(-1)) and the amount of adsorbent (1-6 g PWS) using fed-batch operation. Breakthrough curves describing the variations of effluent copper ion concentrations with time were determined for different operating conditions. Percent copper ion removals from the aqueous phase decreased, but the biosorbed (solid phase) copper ion concentrations increased with increasing the feed flow rate and Cu(II) concentration. A modified Bohart-Adams equation was used to determine the biosorption capacity of PWS and the rate constant for Cu(II) ion biosorption. Adsorption rate constant in fed-batch operation was an order of magnitude larger than those obtained in adsorption columns because of elimination of mass transfer limitations encountered in the column operations while the biosorption capacity of PWS was comparable with powdered activated (PAC) in column operations. Therefore, a completely mixed reactor operated in fed-batch mode was proven to be more advantageous as compared to adsorption columns due to better contact between the phases yielding faster adsorption rates.  相似文献   

5.
Copper biosorption by Auricularia polytricha   总被引:2,自引:0,他引:2  
AIMS: The objective of the present study was to determine the optimum conditions for copper (Cu) biosorption by Auricularia polytricha mycelium in view of its immobilization in polyvinyl alcohol (PVA). METHODS AND RESULTS: The adsorption of Cu(II) onto A. polytricha was studied in batch with respect to initial pH, temperature, adsorption time, initial metal ion and biomass concentration. At optimal adsorption conditions, biomass was immobilized in PVA in column and a biosorption capacity of about 90% was obtained. CONCLUSIONS: Auricularia polytricha strain could successfully be used as Cu biosorbent. SIGNIFICANCE AND IMPACT OF THE STUDY: The low cost and simplicity of the technique make it suitable for the detoxification of contaminated effluents before their environmental discharge.  相似文献   

6.
A comparative study on heavy metal biosorption characteristics of some algae   总被引:12,自引:0,他引:12  
The biosorption of copper(II), nickel(II) and chromium(VI) from aqueous solutions on dried (Chlorella vulgaris, Scenedesmus obliquus and Synechocystis sp.) algae were tested under laboratory conditions as a function of pH, initial metal ion and biomass concentrations. Optimum adsorption pH values of copper(II), nickel(II) and chromium(VI) were determined as 5.0, 4.5 and 2.0. respectively, for all three algae. At the optimal conditions, metal ion uptake increased with initial metal ion concentration up to 250 mg l−1. Experimental results also showed the influence of the alga concentration on the metal uptake for all the species. Both the Freundlich and Langmuir adsorption models were suitable for describing the short-term biosorption of copper(II), nickel(II) and chromium(VI) by all the algal species.  相似文献   

7.
In this study, the biosorption of nickel(II) ion on deactivated protonated yeast was investigated as a function of temperature at different initial metal ion concentrations. The effect of temperature on the sorption was more significant at lower nickel(II) ion concentrations compared to higher concentrations. The protonated yeast biomass exhibited the highest nickel(II) ion uptake capacity at 27 degrees C at an initial nickel(II) ion concentration of 400mg/l and an initial pH of 6.75. The biosorption capacity decreased from 9.8 to 9.3mg/g at an initial nickel(II) ion concentration of 400mg/l, while at a lower initial concentration of 100mg/l, it decreased from 8.2 to 4.9 mg/g, as the temperature was increased from 27 degrees C to 60 degrees C. The equilibrium data fit better to the Freundlich and Redlich-Peterson isotherm models compared to the Langmuir model in the concentration range studied (10-400mg/l). Kinetic models applied to the sorption data at different temperatures showed that nickel(II) ion uptake process followed the pseudo-second order rate model and the adsorption rate constants decreased with increasing temperature. The activation energy of biosorption (Ea) was determined to be -13.3 kJ/mol using the pseudo-second order rate constants. The results indicated that the biosorption of nickel(II) ion on to baker's yeast was spontaneous and exothermic in nature. Desorption studies revealed that the protonated yeast biomass can be regenerated using 0.1N HCl and reused.  相似文献   

8.
Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans   总被引:3,自引:0,他引:3  
The study was aimed to quantify the Cr sorption ability of powdered biomass of Rhizopus nigricans at the best operating conditions. The influence of solution pH, agitation, Cr (VI) concentration, biomass dosage, contact time, biomass particle size and temperature were studied. The optimum pH for biosorption of Cr (VI) was found to be 2.0. Higher adsorption percentage was noted at lower initial concentrations of Cr ions, while the adsorption capacity of the biomass increased with increasing concentration of ions. Optimum biomass dosage was observed as 0.5% (w/v). More than 75% of the ions were removed within 30 min of contact and maximum removal was obtained after 8 h. Biomass particles of smaller size (90 microm) gave maximum adsorption (99.2%) at 100 mg/l concentration. The adsorption capacity increased with increase in temperature and agitation speed and the optimum were determined as 45 degrees C at 120 rpm. Freundlich and Langmuir isotherms were used to evaluate the data and the regression constants were derived. The adsorption rate constant values (Kad) were calculated for different initial concentration of Cr ions and the sorption was found to be higher at lower concentration (100 mg/l) of metal ion.  相似文献   

9.
The kinetics and mechanism of lead biosorption by powderized Rhizopus oligosporus were studied using shake flask experiment. The optimum biomass concentration and initial solution pH for lead sorption at initial lead concentrations ranging from 50–200 mg/l was obtained at 0.5 g/l and pH5, respectively. In term of the ratio of initial lead concentration to biomass concentration ratio, the highest lead adsorption was obtained at 750 mg/g which gave the maximum lead uptake capacity of 126 mg/g. The experimental data of lead sorption by R.oligosporus fitted well to the Langmuir sorption isotherm model, indicating that the sorption was similar to that for an ion-exchange resin. This means that the sorption is a single layer metal adsorption that occurred as a molecular surface coverage. This assumption was confirmed by the examination of lead sorption using transmission electron microscope and energy dispersive X-ray analysis, which showed that during sorption most of the lead was adsorbed on the surface of cell.  相似文献   

10.
Lee YC  Chang SP 《Bioresource technology》2011,102(9):5297-5304
The aim of this research was to develop a low cost adsorbent for wastewater treatment. The prime objective of this study was to search for suitable freshwater filamentous algae that have a high heavy metal ion removal capability. This study evaluated the biosorption capacity from aqueous solutions of the green algae species, Spirogyra and Cladophora, for lead (Pb(II)) and copper (Cu(II)). In comparing the analysis of the Langmuir and Freundlich isotherm models, the adsorption of Pb(II) and Cu(II) by these two types of biosorbents showed a better fit with the Langmuir isotherm model. In the adsorption of heavy metal ions by these two types of biosorbents, chemical and physical adsorption of particle surfaces was perhaps more significant than diffusion and adsorption between particles. Continuous adsorption-desorption experiments discovered that both types of biomass were excellent biosorbents with potential for further development.  相似文献   

11.
Multiple microorganisms directly or treated with NaOH were immobilized by using Ca-alginate embedding to form biosorbents I and II, successively. The biosorption behaviors of biosorbents I and II for Pb(II) from aqueous solution were investigated in a batch system. Effects of solution pH, initial metal concentration, biosorbent dosage, contact time, temperature, and ionic strength on the adsorption process were considered to study the biosorption equilibrium, kinetics, thermodynamics, and mechanism of Pb(II) ion adsorption on the 2 types of biosorbents. The results showed that the adsorption capacity of biosorbent II for Pb(II) was higher than that of biosorbent I, and biosorbent II had a faster adsorption rate for Pb(II) ions. According to FTIR spectra, the carboxyl, amine, and hydroxyl groups on the biomass surface were involved in the biosorption of Pb(II). EDX analysis showed that ion exchange may be involved in the biosorption process, and the morphology observed by SEM micrograph of biosorbent I was completely different from that of biosorbent II. Desorption and regeneration experiments showed that the 2 types of biosorbents could be reused for 3 biosorption-desorption cycles without significant loss of their initial biosorption capacities.  相似文献   

12.
In this present work, a kinetic model for biosorption of copper was developed considering the possibility of different forms of functional groups being present on the surface of the biomass prepared from Aspergillus niger. Results showed that metal uptake by A. niger was a mass transfer driven process, requiring only 30min to achieve 70% adsorption efficiency. Copper sorption by A. niger was influenced by the biomass dose, initial metal ion concentration, and pH of the solution. The Langmuir and Freundlich adsorption isotherms were used to describe the behavior of the system at different pH. The retention capacity of the biomass was determined at pH 6.0 to be equal to 23.62mg/g of biomass. The pretreatment with formalin improved the uptake of metal ion.  相似文献   

13.
The adsorption of copper(II) ions on to dehydrated wheat bran (DWB), a by-product of the flour process, was investigated as a function of initial pH, temperature, initial metal ion concentration and adsorbent dosage. The optimum adsorption conditions were initial pH 5.0, initial copper concentration 100 mg l−1, temperature 60 °C and adsorbent dosage 0.1 g. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 51.5 mg g−1 of copper(II) ions on DWB. The observation of an increase in adsorption with increasing temperature leads to the result that the adsorption of copper(II) ions on DWB is endothermic in nature. The thermodynamic parameters such as enthalpy, free energy and entropy changes were calculated and these values show that the copper(II)-DWB adsorption process was favoured at high temperatures.  相似文献   

14.
A biomass derived from the plant Momordica charantia has been found to be very efficient in arsenic(III) adsorption. An attempt was made to use this biomass for arsenic(III) removal under different conditions. The parameters optimized were contact time (5-150 min), pH (2-11), concentration of adsorbent (1-50 g/l), concentration of adsorbate (0.1-100mg/l), etc. It was observed that the pH had a strong effect on biosorption capacity. The optimum pH obtained for arsenic adsorption was 9. The influence of common ions such as Ca(2+), Mg(2+), Cd(2+), Se(4+), Cl(-), SO(4)(2-), and HCO(3)(-), at concentrations varying from 5 to 1000 mg/l was investigated. To establish the most appropriate correlation for the equilibrium curves, isotherm studies were performed for As(III) ion using Freundlich and Langmuir adsorption isotherms. The pattern of adsorption fitted well with both models. The biomass of M. charantia was found to be effective for the removal of As(III) with 88% sorption efficiency at a concentration of 0.5mg/l of As(III) solution, and thus uptake capacity is 0.88 mg As(III)/gm of biomass. It appears that this biomass should be used as a palliative food item. Further it also appears that the dietary habits may play a role in the toxic effects of ingested arsenic.  相似文献   

15.
Oscillatoria sp. H1 (Cyanobacteria, microalgae) isolated from Mogan Lake was used for the removal of cadmium ions from aqueous solutions as its dry biomass, alive and heat-inactivated immobilized form on Ca-alginate. Particularly, the effect of physicochemical parameters like pH, initial concentration and contact time were investigated. The sorption of Cd(II) ions on the sorbent used was examined for the cadmium concentrations within the range of 25-250 mg/L. The biosorption of Cd(II) increased as the initial concentration of Cd(II) ions increased in the medium up to 100 mg/L. Maximum biosorption capacities for plain alginate beads, dry biomass, immobilized live Oscillatoria sp. H1 and immobilized heat-inactivated Oscillatoria sp. H1 were 21.2, 30.1, 32.2 and 27.5 mg/g, respectively. Biosorption equilibrium was established in about 1 h for the biosorption processes. The biosorption was well described by Langmuir and Freundlich adsorption isotherms. Maximum adsorption was observed at pH 6.0. The alginate-algae beads could be regenerated using 50 mL of 0.1 mol/L HCl solution with about 85% recovery.  相似文献   

16.
以固相酯化法制备一种具有羧基的柠檬酸改性麦草阳离子吸附剂.用批次实验法研究了不同实验条件下(pH值、吸附剂量、吸附质浓度和吸附时间)水溶液中铜离子和亚甲蓝在酯化麦草上的吸附行为.结果表明:溶液初始pH≥40时,铜离子和亚甲蓝达到最大吸附值.≥2.0 g·L-1的酯化麦草能去除铜浓度为100 mg·L-1溶液中96%的铜及亚甲蓝浓度为250 mg·L-1溶液中99%的亚甲蓝.酯化麦草对铜离子和亚甲蓝的吸附符合Langmuir等温模型,其最大吸附能力分别为79.37 mg·g-1和312.50 mg·g-1.铜离子和亚甲蓝达到吸附平衡的时间分别为75 min和5 h,准一级和准二级反应动力学方程可分别描述酯化麦草对铜离子和亚甲蓝的吸附过程.  相似文献   

17.
In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g−1, which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process.  相似文献   

18.
19.
The removal of chromium, cadmium and copper, toxic metals of high environmental priority due to their toxicity, from dilute aqueous solutions has been studied in the present work, applying a dead exopolysaccharide producing bacterium, Ochrobactrum anthropi, isolated from activated sludge. Particularly, the effect of pH, metal concentration and the effects of contact time were considered. Optimum adsorption pH values of chromium(VI), cadmium(II) and copper(II) were 2.0, 8.0 and 3.0 respectively. Experimental results also showed the influence of initial metal concentration on the metal uptake for dried biomass. Both the Freundlich and Langmuir adsorption models were suitable for describing the short-term biosorption of chromium(VI), cadmium(II) and copper(II) by O. anthropi.  相似文献   

20.
El-Morsy el-SM 《Mycologia》2004,96(6):1183-1189
Thirty-two fungal species were isolated from a polluted watercourse near the Talkha fertilizer plant, Mansoura Province, Egypt. Aspergillus niger, A. flavus, Cunninghamella echinulata and Trichoderma koningii were isolated frequently. On the basis of its frequency, Cunninghamella echinulata was chosen for biosorption studies. Free and immobilized biomass of C. echinulata sequestered ions in this decreasing sequence is: Pb >Cu >Zn. The effects of biomass concentration, pH and time of contact were investigated. The level of ion uptake rose with increasing biomass. The maximum uptake for lead (45 mg/g), copper (20 mg/g) and zinc (18.8 mg/g) occurred at 200 mg/L biomass. The uptake rose with increasing pH up to 4 in the case of Pb and 5 in the case of Cu and Zn. Maximum uptake for all metals was achieved after 15 min. Ion uptake followed the Langmuir adsorption model, permitting the calculation of maximum uptake and affinity coefficients. Treatment of C. echinulata biomass with NaOH improved biosorbent capacity, as did immobilization with alginate. Immobilized biomass could be regenerated readily by treatment with dilute HCl. The biomass-alginate complex efficiently removed Pb, Zn and Cu from polluted water samples. Therefore,Cunninghamella echinulata could be employed either in free or immobilized form as a biosorbent of metal ions in waste water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号