首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although various foot models were proposed for kinematics assessment using skin makers, no objective justification exists for the foot segmentations. This study proposed objective kinematic criteria to define which foot joints are relevant (dominant) in skin markers assessments. Among the studied joints, shank-hindfoot, hindfoot-midfoot and medial-lateral forefoot joints were found to have larger mobility than flexibility of their neighbour bonesets. The amplitude and pattern consistency of these joint angles confirmed their dominancy. Nevertheless, the consistency of the medial-lateral forefoot joint amplitude was lower. These three joints also showed acceptable sensibility to experimental errors which supported their dominancy. This study concluded that to be reliable for assessments using skin markers, the foot and ankle complex could be divided into shank, hindfoot, medial forefoot, lateral forefoot and toes. Kinematics of foot models with more segments must be more cautiously used.  相似文献   

2.
Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.  相似文献   

3.
A multi-segment kinematic model of the foot was developed for use in a gait analysis laboratory. The foot was divided into hindfoot, talus, midfoot and medial and lateral forefoot segments. Six functional joints were defined: ankle and subtalar joints, frontal and transverse plane motions of the hindfoot relative to midfoot, supination/pronation twist of the forefoot relative to midfoot and medial longitudinal arch height-to-length ratio. Twelve asymptomatic subjects were tested during barefoot walking with a six-camera optical stereometric system and auto-reflective markers organized in triads. Repeatability of the joint motions was tested using coefficients of multiple correlation. Ankle and subtalar joint motions and twisting of the forefoot were most repeatable. Hindfoot motions were least repeatable both within-subjects and between-subjects. Hindfoot and forefoot pronation in the frontal plane was found to coincide with dropping of the medial longitudinal arch between early to mid-stance, followed by supination and rising of the arch in late stance and swing phase. This multi-segment foot model addresses an unfortunate shortcoming in current gait analysis practice-the inability to measure motion within the foot. Such measurements are crucial if gait analysis is to remain relevant in the orthopaedic and rehabilitative treatment of the foot and ankle.  相似文献   

4.
Although various foot models were proposed for kinematics assessment using skin makers, no objective justification exists for the foot segmentations. This study proposed objective kinematic criteria to define which foot joints are relevant (dominant) in skin markers assessments. Among the studied joints, shank–hindfoot, hindfoot–midfoot and medial–lateral forefoot joints were found to have larger mobility than flexibility of their neighbour bonesets. The amplitude and pattern consistency of these joint angles confirmed their dominancy. Nevertheless, the consistency of the medial–lateral forefoot joint amplitude was lower. These three joints also showed acceptable sensibility to experimental errors which supported their dominancy. This study concluded that to be reliable for assessments using skin markers, the foot and ankle complex could be divided into shank, hindfoot, medial forefoot, lateral forefoot and toes. Kinematics of foot models with more segments must be more cautiously used.  相似文献   

5.
A method is proposed to facilitate the quantification and interpretation of inter-joint/-segment coordination. This technique is illustrated using rearfoot-forefoot kinematic data. We expand existing vector coding techniques and introduce a set of operational terms through which the coordinative patterns between the rearfoot segment and the forefoot segment are summarized: in-phase, anti-phase, rearfoot phase and forefoot phase. The literature on foot mechanics has characterized the stable foot at pushoff by a decreasing medial longitudinal arch angle in the sagittal plane, which is accompanied by forefoot pronation and concurrent rearfoot supination-in other words, anti-phase motion. Nine skin markers were placed on the rearfoot and forefoot segments according to a multi-segment foot model. Three healthy subjects performed standing calibration and walking trials (1.35ms(-1)), while a three-dimensional motion capture system acquired their kinematics. Rearfoot-forefoot joint angles were derived and the arch angle was inferred from the sagittal plane. Coupling angles of rearfoot and forefoot segments were derived and categorized into one of the four coordination patterns. Arch kinematics were consistent with the literature; in stance, the arch angle reached peak dorsiflexion, and then decreased rapidly. However, anti-phase coordination was not the predominant pattern during mid- or late stance. These preliminary data suggest that the coordinative interactions between the rearfoot and the forefoot are more complicated than previously described. The technique offers a new perspective on coordination and may provide insight into deformations of underlying tissues, such as the plantar fascia.  相似文献   

6.
Multi-segment foot models are increasingly being used to evaluate intra and inter-segment foot kinematics such as the motion between the hindfoot/tibia (ankle) and the forefoot/hindfoot (midfoot) during walking. However, kinetic analysis have been mainly restricted to one-segment foot models and could be improved by considering a multi-segment approach. Therefore, the aims of this study were to (1) implement a kinetic analysis of the ankle and theoretical midfoot joints using the existing Oxford Foot Model (OFM) through a standard inverse dynamics approach using only marker, force plate and anthropometric data and (2) to compare OFM ankle joint kinetics to those output by the one-segment foot plugin-gait model (PIG). 10 healthy adolescents fitted with both the OFM and PIG markers performed barefoot comfortable speed walking trials over an instrumented walkway. The maximum ankle power generation was significantly reduced by approximately 40% through OFM calculations compared to PIG estimates (p<0.001). This result was not caused by a decrease in OFM computed joint moments, but by a reduction in the angular velocity between the tibia/hindfoot (OFM) compared to the tibia/foot (PIG) (p<0.001). Additionally, analysis revealed considerable midfoot loading. One-segment foot models overestimate ankle power, and may also overestimate the contribution of the triceps surae. A multi-segment approach may help quantify the important contribution of the midfoot ligaments and musculature to power generation. We therefore recommend the use of multi-segment foot models to estimate ankle and midfoot kinetics, especially when surgical decision-making is based on the results of three-dimensional gait analysis.  相似文献   

7.
Patients with subtalar joint instability may be misdiagnosed with ankle instability, which may lead to chronic instability at the subtalar joint. Therefore, it is important to understand the difference in kinematics after ligament sectioning and differentiate the changes in kinematics between ankle and subtalar instability. Three methods may be used to determine the joint kinematics; the Euler angles, the Joint Coordinate System (JCS) and the helical axis (HA). The purpose of this study was to investigate the influence of using either method to detect subtalar and ankle joints instability. 3D kinematics at the ankle and subtalar joint were analyzed on 8 cadaveric specimens while the foot was intact and after sequentially sectioning the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL), the cervical ligament and the interosseous talocalcaneal ligament (ITCL). Comparison in kinematics calculated from sensor and anatomical landmarks was conducted as well as the influence of Euler angles and JCS rotation sequence (between ISB recommendation and previous research) on the subtalar joint. All data showed a significant increase in inversion when the ITCL was sectioned. There were differences in the data calculated using sensors coordinate systems vs. anatomic coordinate systems. Anatomic coordinate systems were recommended for these calculations. The Euler angle and JCS gave similar results. Differences in Euler angles and JCS sequence lead to the same conclusion in detecting instability at the ankle and subtalar joint. As expected, the HA detected instability in plantarflexion at the ankle joint and in inversion at the subtalar joint.  相似文献   

8.
Finger joint angles and finger forces during maximal cylindrical grasping were measured using multi-camera photogrammetry and pressure-sensitive sheets, respectively. The experimental data were collected from four healthy subjects gripping cylinders of five different sizes. For joint angles, an image analysis system was used to digitize slides showing markers. During the calibration of the camera system, both the nonlinear least square and the direct linear transform methods were applied and compared, the former providing the fewer errors; it was used to determine joint angles. Data were collected from the pressure-sensitive grip films by using the same image analysis system as used in the collection of the joint angle data. The method of using pressure-sensitive sheets provided an estimation of the weighted centre of the phalangeal forces. Results indicate that finger flexion angles at the metacarpophalangeal and proximal interphalangeal joints gradually increase as cylinder diameter decreases, but that at the distal interphalangeal joint the angle remains constant throughout all cylinder sizes. It was also found that most of the radio-ulnar deviation and the axial rotation angles at the finger joints deviate from zero, but the deviations are small. For the force measurement, it was found that total finger force increases as cylinder size decreases, and the phalangeal force centres are not located at the mid-points of the phalanges. The data obtained in this experiment would be useful for muscle force predictions and for the design of handles.  相似文献   

9.
In gait analysis, the concepts of Euler and helical (screw) angles are used to define the three-dimensional relative joint angular motion of lower extremities. Reliable estimation of joint angular motion depends on the accurate definition and construction of embedded axes within each body segment. In this paper, using sensitivity analysis, we quantify the effects of uncertainties in the definition and construction of embedded axes on the estimation of joint angular motion during gait. Using representative hip and knee motion data from normal subjects and cerebral palsy patients, the flexion-extension axis is analytically perturbed +/- 15 degrees in 5 degrees steps from a reference position, and the joint angles are recomputed for both Euler and helical angle definitions. For the Euler model, hip and knee flexion angles are relatively unaffected while the ab/adduction and rotation angles are significantly affected throughout the gait cycle. An error of 15 degrees in the definition of flexion-extension axis gives rise to maximum errors of 8 and 12 degrees for the ab/adduction angle, and 10-15 degrees for the rotation angles at the hip and knee, respectively. Furthermore, the magnitude of errors in ab/adduction and rotation angles are a function of the flexion angle. The errors for the ab/adduction angles increase with increasing flexion angle and for the rotation angle, decrease with increasing flexion angle. In cerebral palsy patients with flexed knee pattern of gait, this will result in distorted estimation of ab/adduction and rotation. For the helical model, similar results are obtained for the helical angle and associated direction cosines.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An unbiased understanding of foot kinematics has been difficult to achieve due to the complexity of foot structure and motion. We have developed a protocol for evaluation of foot kinematics during barefoot walking based on a multi-segment foot model. Stereophotogrammetry was used to measure retroreflective markers on three segments of the foot plus the tibia. Repeatability was evaluated between-trial, between-day and between-tester using two subjects and two testers. Subtle patterns and ranges of motion between segments of the foot were consistently detected. We found that repeatability between different days or different testers is primarily subject to variability of marker placement more than inter-tester variability or skin movement. Differences between inter-segment angle curves primarily represent a shift in the absolute value of joint angles from one set of trials to another. In the hallux, variability was greater than desired due to vibration of the marker array used. The method permits objective foot measurement in gait analysis using skin-mounted markers. Quantitative and objective characterisation of the kinematics of the foot during activity is an important area of clinical and research evaluation. With this work we hope to have provided a firm basis for a common protocol for in vivo foot study.  相似文献   

11.
To estimate hip joint angles during selected motor tasks using stereophotogrammetric data, it is necessary to determine the hip joint centre position. The question is whether the errors affecting that determination propagate less to the angles estimates when a three degrees of freedom (DOFs) constraint (spherical hinge) is used between femur and pelvis, rather than when the two bones are assumed to be unconstrained (six DOFs). An analytical relationship between the hip joint centre location error and the joint angle error was obtained limited to the planar case. In the 3-D case, a similar relationship was obtained using a simulation approach based on experimental data. The joint angle patterns resulted in a larger distortion using a constrained approach, especially when wider rotations occur. The range of motion of the hip flexion-extension, obtained simulating different location errors and without taking into account soft tissue artefacts, varied approximately 7 deg using a constrained approach and up to 1 deg when calculated with an unconstrained approach. Thus, the unconstrained approach should be preferred even though its estimated three linear DOFs most unlikely carry meaningful information.  相似文献   

12.
Postures are often described and modeled using angles between body segments rather than joint coordinates. Models can be used to predict these angles as a function of anthropometry and postural requirements. Postural representation, however, requires the joint coordinates. The use of conventional forward kinematics to derive joint coordinates from predicted angles may violate task constraints, such as the placement of a hand on a target or a foot on a pedal. Errors arise because the anthropometry or other motion characteristics of a subject, for which the prediction is to be made, may differ from the data from which the prediction model was derived. We describe how to rectify model-predicted postures to exactly satisfy such task constraints. We require that the model used for predicting the angles also produce estimates of the variation in these predictions. We show how to alter the initial angle predictions, with the amount of perturbation at each angle dependent on the accuracy of its estimation, so as to exactly satisfy the joint coordinate constraints. Finally, we show in an empirical example that this correction usually produces better overall predictions of posture than those obtained initially.  相似文献   

13.
There is a dearth of information on navicular, cuboid, cuneiform and metatarsal kinematics during walking and our objective was to study the kinematic contributions these bones might make to foot function. A dynamic cadaver model of walking was used to apply forces to cadaver feet and mobilise them in a manner similar to in vivo. Kinematic data were recorded from 13 cadaver feet. Given limitations to the simulation, the data describe what the cadaver feet were capable of in response to the forces applied, rather than exactly how they performed in vivo. The talonavicular joint was more mobile than the calcaneocuboid joint. The range of motion between cuneiforms and navicular was similar to that between talus and navicular. Metatarsals four and five were more mobile relative to the cuboid than metatarsals one, two and three relative to the cuneiforms. This work has confirmed the complexity of rear, mid and forefoot kinematics. The data demonstrate the potential for often-ignored foot joints to contribute significantly to the overall kinematic function of the foot. Previous emphasis on the ankle and sub talar joints as the principal articulating components of the foot has neglected more distal articulations. The results also demonstrate the extent to which the rigid segment assumptions of previous foot kinematics research have over simplified the foot.  相似文献   

14.
Recognition of the changes during gait that occur normally as a part of growth is essential to prevent mislabeling those changes from adult gait as evidence of gait pathology. Currently, in the literature, the definition of a mature age for ankle joint dynamics is controversial (i.e., between 5 and 10 years). Moreover, the mature age of the metatarsophalangeal (MP) joint, which is essential for the functioning of the foot, has not been defined in the literature. Thus, the objective of the present study explored foot mechanics (ankle and MP joints) in young children to define a mature age of foot function. Forty-two healthy children between 1 and 6 years of age and eight adults were measured during gait. The ground reaction force (GRF), the MP and ankle joint angles, moments, powers, and 3D angles between the joint moment and the joint angular velocity vectors (3D angle α(M.ω)) were processed and compared between four age groups (2, 3.5, 5 and adults). Based on statistical analysis, the MP joint biomechanical parameters were similar between children (older than 2 years) and adults, hinting at a quick maturation of this joint mechanics. The ankle joint parameters and the GRFs (except for the frontal plane) showed an adult-like pattern in 5-year-old children. Some ankle joint parameters, such as the joint power and the 3D angle α(M.ω) still evolved significantly until 3.5 years. Based on these results, it would appear that foot maturation during gait is fully achieved at 5 years.  相似文献   

15.
Accurate measurement of ground reaction forces under discrete areas of the foot is important in the development of more advanced foot models, which can improve our understanding of foot and ankle function. To overcome current equipment limitations, a few investigators have proposed combining a pressure mat with a single force platform and using a proportionality assumption to estimate subarea shear forces and free moments. In this study, two adjacent force platforms were used to evaluate the accuracy of the proportionality assumption on a three segment foot model during normal gait. Seventeen right feet were tested using a targeted walking approach, isolating two separate joints: transverse tarsal and metatarsophalangeal. Root mean square (RMS) errors in shear forces up to 6% body weight (BW) were found using the proportionality assumption, with the highest errors (peak absolute errors up to 12% BW) occurring between the forefoot and toes in terminal stance. The hallux exerted a small braking force in opposition to the propulsive force of the forefoot, which was unaccounted for by the proportionality assumption. While the assumption may be suitable for specific applications (e.g. gait analysis models), it is important to understand that some information on foot function can be lost. The results help highlight possible limitations of the assumption. Measured ensemble average subarea shear forces during normal gait are also presented for the first time.  相似文献   

16.
Several full body musculoskeletal models have been developed for research applications and these models may potentially be developed into useful clinical tools to assess gait pathologies. Existing full-body musculoskeletal models treat the foot as a single segment and ignore the motions of the intrinsic joints of the foot. This assumption limits the use of such models in clinical cases with significant foot deformities. Therefore, a three-segment musculoskeletal model of the foot was developed to match the segmentation of a recently developed multi-segment kinematic foot model. All the muscles and ligaments of the foot spanning the modeled joints were included. Muscle pathways were adjusted with an optimization routine to minimize the difference between the muscle flexion–extension moment arms from the model and moment arms reported in literature. The model was driven by walking data from five normal pediatric subjects (aged 10.6±1.57 years) and muscle forces and activation levels required to produce joint motions were calculated using an inverse dynamic analysis approach. Due to the close proximity of markers on the foot, small marker placement error during motion data collection may lead to significant differences in musculoskeletal model outcomes. Therefore, an optimization routine was developed to enforce joint constraints, optimally scale each segment length and adjust marker positions. To evaluate the model outcomes, the muscle activation patterns during walking were compared with electromyography (EMG) activation patterns reported in the literature. Model-generated muscle activation patterns were observed to be similar to the EMG activation patterns.  相似文献   

17.
Baker R 《Journal of biomechanics》2011,44(10):1885-1891
Three different methods for describing three dimensional joint angles are commonly used in biomechanics. The joint coordinate system and Cardan/Euler angles are conceptually quite different but are known to represent the same underlying mathematics. More recently the globographic method has been suggested as an alternative and this has proved particularly attractive for the shoulder joint. All three methods can be implemented in a number of ways leading to a choice of angle definitions. Very recently Rab has demonstrated that the globographic method is equivalent to one implementation of the joint coordinate system. This paper presents a rigorous analysis of the three different methods and proves their mathematical equivalence. The well known sequence dependence of Cardan/Euler is presented as equivalent to configuration dependence of the joint coordinate system and orientation dependence of globographic angles. The precise definition of different angle sets can be easily visualised using the globographic method using analogues of longitude, latitude and surface bearings with which most users will already be familiar. The method implicitly requires one axis of the moving segment to be identified as its principal axis and this can be extremely useful in helping define the most appropriate angle set to describe the orientation of any particular joint. Using this technique different angle sets are considered to be most appropriate for different joints and examples of this for the hip, knee, ankle, pelvis and axial skeleton are outlined.  相似文献   

18.
Changes in running strike pattern affect ankle and knee mechanics, but little is known about the influence of strike pattern on the joints distal to the ankle. The purpose of this study was to explore the effects of forefoot strike (FFS) and rearfoot strike (RFS) running patterns on foot kinematics and kinetics, from the perspectives of the midtarsal locking theory and the windlass mechanism. Per the midtarsal locking theory, we hypothesized that the ankle would be more inverted in early stance when using a FFS, resulting in decreased midtarsal joint excursions and increased dynamic stiffness. Associated with a more engaged windlass mechanism, we hypothesized that a FFS would elicit increased metatarsophalangeal joint excursions and negative work in late stance. Eighteen healthy female runners ran overground with both FFS and RFS patterns. Instrumented motion capture and a validated multi-segment foot model were used to analyze midtarsal and metatarsophalangeal joint kinematics and kinetics. During early stance in FFS the ankle was more inverted, with concurrently decreased midtarsal eversion (p < 0.001) and abduction excursions (p = 0.003) but increased dorsiflexion excursion (p = 0.005). Dynamic midtarsal stiffness did not differ (p = 0.761). During late stance in FFS, metatarsophalangeal extension was increased (p = 0.009), with concurrently increased negative work (p < 0.001). In addition, there was simultaneously increased midtarsal positive work (p < 0.001), suggesting enhanced power transfer in FFS. Clear evidence for the presence of midtarsal locking was not observed in either strike pattern during running. However, the windlass mechanism appeared to be engaged to a greater extent during FFS.  相似文献   

19.
20.
There are evidences to suggest that wearing footwear constrains the natural barefoot motion during locomotion. Unlike prior studies that deduced foot motions from shoe sole displacement parameters, the aim of this study was to examine the effect of footwear motion on forefoot to rearfoot relative motion during walking and running. The use of a multi-segment foot model allowed accurate both shoe sole and foot motions (barefoot and shod) to be quantified. Two pairs of identical sandals with different midsole hardness were used. Ten healthy male subjects walked and ran in each of the shod condition.The results showed that for barefoot locomotion there was more eversion of the forefoot and it occurred faster than for shod locomotion. In this later condition, the range of eversion was reduced by 20% and the rate of eversion in late stance by 60% in comparison to the barefoot condition. The sole constrained both the torsional (eversion/inversion) and adduction range of motion of the foot. Interestingly, during the push-off phase of barefoot locomotion the rate and direction of forefoot torsion varied between individuals. However, most subjects displayed a forefoot inversion direction of motion while shod. Therefore, this experiment showed that the shoes not only restricted the natural motion of the barefoot but also appeared to impose a specific foot motion pattern on individuals during the push-off phase. These findings have implications for the matching of footwear design characteristics to individual natural foot function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号