首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A virus PBCV-1, which infects certain fresh water algae and has been shown by transmission and cryo-electron microscopy to exist as a triskaidecahedron, was imaged using atomic force microscopy (AFM). From AFM the particles have diameters of about 190nm and the overall structure is in all important respects consistent with existing models. The surface lattice of the virion is composed of trimeric capsid proteins distributed according to p3 symmetry to create a honeycomb arrangement of raised edges forming quasi-hexagonal cells. At the pentagonal vertices are five copies of a different protein forming an exact pentagon, and this has yet another unique protein in its center. The apical protein exhibits some unusual mechanical properties in that it can be made to retract into the virion interior when subjected to AFM tip pressure. When PBCV-1 virions degrade, they give rise to small, uniform, spherical, and virus like particles (VLP) consistent with T=1 or 3 icosahedral products. Also observed upon disintegration are strands of linear dsDNA. Fibers of unknown function are also occasionally seen associated with some virions.  相似文献   

2.
3.
The K+ channel Kcv is encoded by the chlorella virus PBCV-1. There is evidence that this channel plays an essential role in the replication of the virus, because both PBCV-1 plaque formation and Kcv channel activity in Xenopus oocytes have similar sensitivities to inhibitors. Here we report circumstantial evidence that the Kcv channel is important during virus infection. Recordings of membrane voltage in the host cells Chlorella NC64A reveal a membrane depolarization within the first few minutes of infection. This depolarization displays the same sensitivity to cations as Kcv conductance; depolarization also requires the intact membrane of the virion. Together these data are consistent with the idea that the virus carries functional K+ channels in the virion and inserts them into the host cell plasma membrane during infection.  相似文献   

4.
At least three structural proteins in Paramecium bursaria Chlorella virus (PBCV-1) are glycosylated, including the major capsid protein Vp54. However, unlike other glycoprotein-containing viruses that use host-encoded enzymes in the endoplasmic reticulum-Golgi to glycosylate their proteins, PBCV-1 encodes at least many, if not all, of the glycosyltransferases used to glycosylate its structural proteins. As described here, PBCV-1 also encodes two open reading frames that resemble bacterial and mammalian enzymes involved in de novo GDP-L-fucose biosynthesis. This pathway, starting from GDP-D-mannose, consists of two sequential steps catalyzed by GDP-D-mannose 4,6 dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, respectively. The two PBCV-1-encoded genes were expressed in Escherichia coli, and the recombinant proteins had the predicted enzyme activity. However, in addition to the dehydratase activity, PBCV-1 GMD also had a reductase activity, producing GDP-D-rhamnose. In vivo studies established that PBCV-1 GMD and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase are expressed after virus infection and that both GDP-L-fucose and GDP-D-rhamnose are produced in virus-infected cells. Thus, PBCV-1 is the first virus known to encode enzymes involved in nucleotide sugar metabolism. Because fucose and rhamnose are components of the glycans attached to Vp54, the pathway could circumvent a limited supply of GDP sugars by the algal host.  相似文献   

5.
Tu AH  Voelker LL  Shen X  Dybvig K 《Plasmid》2001,45(2):122-126
Mycoplasma virus P1 is one of only four viruses isolated from the genus Mycoplasma. The host for P1, Mycoplasma pulmonis, possesses complex, phase-variable restriction and modification enzymes and the Vsa family of phase-variable surface proteins. The ability of P1 virus to infect host cells is influenced by these phase-variable systems, rendering P1 a valuable tool for assessing host properties. The double-stranded P1 DNA genome was sequenced (11,660 bp) and 11 ORFs were identified. The predicted P1 DNA polymerase is similar to that of phages that are known to have terminal protein (TP) attached to the 5' end of their genome, consistent with previous studies indicating that P1 DNA has covalently attached TP. Most of the other predicted P1 proteins have little sequence similarity to known proteins, and P1 virus is unrelated to the other mycoplasma virus, MAV1, for which the genome sequence is known. One of the predicted P1 proteins, the ORF 8 gene product, contains a repetitive collagen-like motif characteristic of some bacteriophage tail fiber proteins and is a candidate for interacting with the Vsa proteins.  相似文献   

6.
Archaeal organisms are generally known as diverse extremophiles, but they play a crucial role also in moderate environments. So far, only about 50 archaeal viruses have been described in some detail. Despite this, unusual viral morphotypes within this group have been reported. Interestingly, all isolated archaeal viruses have a double-stranded DNA (dsDNA) genome. To further characterize the diversity of archaeal viruses, we screened highly saline water samples for archaea and their viruses. Here, we describe a new haloarchaeal virus, Halorubrum pleomorphic virus 1 (HRPV-1) that was isolated from a solar saltern and infects an indigenous host belonging to the genus Halorubrum . Infection does not cause cell lysis, but slightly retards growth of the host and results in high replication of the virus. The sequenced genome (7048 nucleotides) of HRPV-1 is single-stranded DNA (ssDNA), which makes HRPV-1 the first characterized archaeal virus that does not have a dsDNA genome. In spite of this, similarities to another archaeal virus were observed. Two major structural proteins were recognized in protein analyses, and by lipid analyses it was shown that the virion contains a membrane. Electron microscopy studies indicate that the enveloped virion is pleomorphic (approximately 44 × 55 nm). HRPV-1 virion may represent commonly used virion architecture, and it seems that structure-based virus lineages may be extended to non-icosahedral viruses.  相似文献   

7.
Purified full and empty virions of minute virus of mice were separated on CsCl gradients, and their polypeptides were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The empty particle contains two polypeptides, A (83,300 daltons) and B (64,300 daltons), which are 15 to 18% and 82 to 85%, respectively, of the virion mass. The full particle contains the single-stranded DNA genome, proteins A and B, and a third polypeptide, C (61,400 daltons). Again A is 15 to 18% of the protein mass, but the amounts of B and C vary inversely in different preparations of full particles. These polypeptides comprise greater than 99.6% of the protein in either virion, and their molecular weights and molar ratios are independent of the species of host cell on which the virus is propagated, They are not found in uninfected cells, and no protein component of uninfected cells copurifies with either virion under our conditions. Pulse-chase experiments show that the three proteins are synthesized only after virus infection and are therefore probably virus coded. Sequential harvesting from the nuclei of cells infected under one cycle growth conditions shows an increase in the proportion of C in full particles as infection progresses, suggesting that C is derived from B in a late maturation step.  相似文献   

8.
The virion proteins and genomic RNA of human parainfluenza virus 3 have been characterized. The virion contains seven major and two minor proteins. Three proteins of 195 X 10(3) molecular weight (195K), 87K, and 67K are associated with the nucleocapsid of the virion and have been designated L, P, and NP, respectively. Three proteins can be labeled with [14C]glucosamine and have molecular weights of 69K, 60K, and 46K. We have designated these proteins as HN, F0, and F1, respectively. HN protein has interchain disulfide bonds, but does not participate in disulfide bonding to form homomultimeric forms. F1 appears to be derived from a complex, F1,2, that has an electrophoretic mobility similar to that of F0 under nonreducing conditions. A protein of 35K is associated with the envelope components of the virion and aggregates under low-salt conditions; this protein has been designated M. The genome of human parainfluenza virus 3 is a linear RNA molecule with a molecular weight of approximately 4.6 X 10(6).  相似文献   

9.
10.
A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long tails at each pointed end, at temperatures close to that of the natural habitat, 85 degrees C. The extracellularly developed tails constitute tubes, which terminate in an anchor-like structure that is not observed in the tail-less particles. A thin filament is located within the tube, which exhibits a periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable elements as well as genes, which previously have been associated only with archaeal self-transmissable plasmids. In total, it encodes 72 predicted proteins, including 11 structural proteins with molecular masses in the range of 12 to 90 kDa. Several of the larger proteins are rich in coiled coil and/or low complexity sequence domains, which are unusual for archaea. One protein, in particular P800, resembles an intermediate filament protein in its structural properties. It is modified in the two-tailed, but not in the tail-less, virion particles and it may contribute to viral tail development. Exceptionally for a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and this process can be interrupted by different stress factors.  相似文献   

11.
An enzyme was isolated from a eucaryotic, Chlorella-like green alga infected with the virus PBCV-1 which exhibits type II restriction endonuclease activity. The enzyme recognized the sequence GATC and cleaved DNA 5' to the G. Methylation of deoxyadenosine in the GATC sequence inhibited enzyme activity. In vitro the enzyme cleaved host Chlorella nuclear DNA but not viral DNA because host DNA contains GATC and PBCV-1 DNA contains GmATC sequences. PBCV-1 DNA is probably methylated in vivo by the PBCV-1-induced methyltransferase described elsewhere (Y. Xia and J. L. Van Etten, Mol. Cell. Biol. 6:1440-1445). Restriction endonuclease activity was first detected 30 to 60 min after viral infection; the appearance of enzyme activity required de novo protein synthesis, and the enzyme is probably virus encoded. Appearance of enzyme activity coincided with the onset of host DNA degradation after PBCV-1 infection. We propose that the PBCV-1-induced restriction endonuclease participates in host DNA degradation and is part of a virus-induced restriction and modification system in PBCV-1-infected Chlorella cells.  相似文献   

12.
13.
14.
Proteins located in the tegument layer of herpesvirus particles play important roles in the replicative cycle at both early and late times after infection. As major constituents of the virion, they execute important functions in particular during formation of progeny virions. These functions have mostly been elucidated by construction and analysis of mutant viruses deleted in single or multiple tegument protein-encoding genes (reviewed in the work of T. C. Mettenleiter, Virus Res. 106:167-180, 2004). However, since tegument proteins have been shown to be involved in numerous protein-protein interactions, the impact of single protein deletions on the composition of the virus particle is unknown, but they could impair correct interpretation of the results. To analyze how the absence of single virion constituents influences virion composition, we established a procedure to assay relative amounts of virion structural proteins in deletion mutants of the alphaherpesvirus Pseudorabies virus (PrV) in comparison to wild-type particles. The assay is based on the mass spectrometric quantitation of virion protein-derived peptides carrying stable isotope mass tags. After deletion of the US3, UL47, UL49, or glycoprotein E gene, relative amounts of a capsid protein (UL38), a capsid-associated protein (UL25), several tegument proteins (UL36 and UL47, if present), and glycoprotein H were unaffected, whereas the content of other tegument proteins (UL46, UL48, and UL49, if present) varied significantly. In the case of the UL48 gene product, a specific increase in incorporation of a smaller isoform was observed after deletion of the UL47 or UL49 gene, whereas a larger isoform remained unaffected. The cellular protein actin was enriched in virions of mutants deficient in any of the tegument proteins UL47, UL49, or US3. By two-dimensional gel electrophoresis multiple isoforms of host cell-derived heat shock protein 70 and annexins A1 and A2 were also identified as structural components of PrV virions.  相似文献   

15.
A DNA methyltransferase was isolated from a eucaryotic, Chlorella-like green alga infected with the virus PBCV-1. The enzyme recognized the sequence GATC and methylated deoxyadenosine solely in GATC sequences. Host DNA, which contains GATC sequences, but not PBCV-1 DNA, which contains GmATC sequences, was a good substrate for the enzyme in vitro. The DNA methyltransferase activity was first detected about 1 h after viral infection; PBCV-1 DNA synthesis and host DNA degradation also began at about this time. The appearance of the DNA methyltransferase activity required de novo protein synthesis, and the enzyme was probably virus encoded. Methylation of DNAs with the PBCV-1-induced methyltransferase conferred resistance of the DNAs to a PBCV-1-induced restriction endonuclease enzyme described previously (Y. Xia, D. E. Burbank, L. Uher, D. Rabussay, and J. L. Van Etten, Mol. Cell. Biol. 6:1430-1439). We propose that the PBCV-1-induced methyltransferase protects viral DNA from the PBCV-1-induced restriction endonuclease and is part of a virus-induced restriction and modification system in PBCV-1-infected Chlorella cells.  相似文献   

16.

Background

Although many vaccinia virus proteins have been identified and studied in detail, only a few studies have attempted a comprehensive survey of the protein composition of the vaccinia virion. These projects have identified the major proteins of the vaccinia virion, but little has been accomplished to identify the unknown or less abundant proteins. Obtaining a detailed knowledge of the viral proteome of vaccinia virus will be important for advancing our understanding of orthopoxvirus biology, and should facilitate the development of effective antiviral drugs and formulation of vaccines.

Results

In order to accomplish this task, purified vaccinia virions were fractionated into a soluble protein enriched fraction (membrane proteins and lateral bodies) and an insoluble protein enriched fraction (virion cores). Each of these fractions was subjected to further fractionation by either sodium dodecyl sulfate-polyacrylamide gel electophoresis, or by reverse phase high performance liquid chromatography. The soluble and insoluble fractions were also analyzed directly with no further separation. The samples were prepared for mass spectrometry analysis by digestion with trypsin. Tryptic digests were analyzed by using either a matrix assisted laser desorption ionization time of flight tandem mass spectrometer, a quadrupole ion trap mass spectrometer, or a quadrupole-time of flight mass spectrometer (the latter two instruments were equipped with electrospray ionization sources). Proteins were identified by searching uninterpreted tandem mass spectra against a vaccinia virus protein database created by our lab and a non-redundant protein database.

Conclusion

Sixty three vaccinia proteins were identified in the virion particle. The total number of peptides found for each protein ranged from 1 to 62, and the sequence coverage of the proteins ranged from 8.2% to 94.9%. Interestingly, two vaccinia open reading frames were confirmed as being expressed as novel proteins: E6R and L3L.  相似文献   

17.
The sequence of 4.4 kilobase pairs (kbp) from the conventional right terminus of the A + T-rich light-DNA (L-DNA) sequences of the herpesvirus saimiri (HVS) genome contains a leftward-directed open reading frame (ORF) for a 1,299-residue protein. The molecular weight predicted for the protein (143,000) is in good agreement with the estimates of 150,000 to 160,000 for the major nonglycosylated polypeptide of the virion tegument (the 160K polypeptide), previously shown to be encoded by this region of the genome. The first initiation codon of the ORF is only 250 nucleotides from the junction of the L-DNA component with the G + C-rich terminal reiterations (i.e., heavy or H-DNA) of the genome. An unusually A + T-rich sequence (43 of 45 nucleotides are A or T, relative to a mean composition of 40% G + C for the ORF) occurs some 75 bp 5' to this initiation codon, and the first adenylation signal (AATAAA) on this DNA strand occurs 18 bp 3' to the termination codon. The amino acid sequence predicted for the 160K protein of HVS is homologous over most of its length to the 1,318-residue protein encoded by the leftmost major ORF of the G + C-rich genome of Epstein-Barr virus (BNRF1, the 140K nonglycosylated membrane antigen). No homology to either of these proteins is evident among the products predicted from the complete sequence of the alpha herpesvirus varicella-zoster virus. Thus gamma herpesviruses with coding sequences which differ in mean nucleotide composition by some 20% G + C have homologous proteins encoded at similar positions with respect to genome termini, with the right end of HVS being homologous to the left end of Epstein-Barr virus.  相似文献   

18.
Virus particles (virions) often contain not only virus-encoded but also host-encoded proteins. Some of these host proteins are enclosed within the virion structure, while others, in the case of enveloped viruses, are embedded in the host-derived membrane. While many of these host protein incorporations are likely accidental, some may play a role in virus infectivity, replication and/or immunoreactivity in the next host. Host protein incorporations may be especially important in therapeutic applications where large numbers of virus particles are administered. Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus and a candidate vaccine, gene therapy and oncolytic vector. Using mass spectrometry, we previously examined cell type dependent host protein content of VSV virions using intact (“whole”) virions purified from three cell lines originating from different species. Here we aimed to determine the localization of host proteins within the VSV virions by analyzing: i) whole VSV virions; and ii) whole VSV virions treated with Proteinase K to remove all proteins outside the viral envelope. A total of 257 proteins were identified, with 181 identified in whole virions and 183 identified in Proteinase K treated virions. Most of these proteins have not been previously shown to be associated with VSV. Functional enrichment analysis indicated the most overrepresented categories were proteins associated with vesicles, vesicle-mediated transport and protein localization. Using western blotting, the presence of several host proteins, including some not previously shown in association with VSV (such as Yes1, Prl1 and Ddx3y), was confirmed and their relative quantities in various virion fractions determined. Our study provides a valuable inventory of virion-associated host proteins for further investigation of their roles in the replication cycle, pathogenesis and immunoreactivity of VSV.  相似文献   

19.
The double-stranded (ds)DNA virus phiCh1 infects the haloalkaliphilic archaeon Natrialba magadii. The complete DNA sequence of 58 498 bp of the temperate virus was established, and the probable functions of 21 of 98 phiCh1-encoded open reading frames (ORFs) have been assigned. This knowledge has been used to propose functional modules each required for specific functions during virus development. The phiCh1 DNA is terminally redundant and circularly permuted and therefore appears to be packaged by the so-called headful mechanism. The presence of ORFs encoding homologues of proteins involved in plasmid replication as well as experimental evidence indicate a plasmid-mediated replication strategy of the virus. Results from nanosequencing of virion components suggest covalent cross-linking of monomers of at least one of the structural proteins during virus maturation. A comparison of the phiCh1 genome with the partly sequenced genome of Halobacterium salinarum virus phiH revealed a close relationship between the two viruses, although their host organisms live in distinct environments with respect to the different pH values required for growth.  相似文献   

20.
The complete nucleotide sequence of the genome segment 4 (S4) of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) was determined. The 3,259-nucleotide sequence contains a single long open reading frame which spans nucleotides 14 to 3187 and which is predicted to encode a protein with a molecular mass of about 130 kDa. Western blot analysis showed that S4 encodes BmCPV protein VP3, which is one of the outer components of the BmCPV virion. Sequence analysis of the deduced amino acid sequence of BmCPV VP3 revealed possible sequence homology with proteins from rice ragged stunt virus (RRSV) S2, Nilaparvata lugens reovirus S4, and Fiji disease fijivirus S4. This may suggest that plant reoviruses originated from insect viruses and that RRSV emerged more recently than other plant reoviruses. A chimeric protein consisting of BmCPV VP3 and green fluorescent protein (GFP) was constructed and expressed with BmCPV polyhedrin using a baculovirus expression vector. The VP3-GFP chimera was incorporated into BmCPV polyhedra and released under alkaline conditions. The results indicate that specific interactions occur between BmCPV polyhedrin and VP3 which might facilitate BmCPV virion occlusion into the polyhedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号