首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
BackgroundTransient receptor potential melastatin 7 (TRPM7) regulates breast cancer cell proliferation, migration, invasion and metastasis in its ion channel- and kinase domain-dependent manner. The pharmacological effects of TRPM7 ion channel inhibitors on breast cancer cells have been studied, but little is known about the effects of TRPM7 kinase domain inhibitors due to lack of potent TRPM7 kinase inhibitors.MethodsScreening was performed by using TRPM7 kinase assay. Effects of TG100-115 on breast cancer cell proliferation, migration, invasion, myosin IIA phosphorylation, and TRPM7 ion channel activity were assessed by using MTT, wound healing, transwell assay, Western blotting, and patch clamping, respectively.ResultsWe found that CREB peptide is a potent substrate for the TR-FRET based TRPM7 kinase assay. Using this method, we discovered a new and potent TRPM7 kinase inhibitor, TG100-115. TG100-115 inhibited TRPM7 kinase activity in an ATP competitive fashion with over 70-fold stronger activity than that of rottlerin, known as a TRPM7 kinase inhibitor. TG100-115 has little effect on proliferation of MDA-MB-231 cells, but significantly decreases cell migration and invasion. Moreover, TG100-115 inhibits TRPM7 kinase regulated phosphorylation of the myosin IIA heavy chain and phosphorylation of focal adhesion kinase. TG100-115 also suppressed TRPM7 ion channel activity.ConclusionsTG100-115 can be used as a potent TRPM7 kinase inhibitor and a potent inhibitor of breast cancer cell migration.General significanceTG100-115 could be a useful tool for studying the pharmacological effects of TRPM7 kinase activity aimed at providing insight into new therapeutic approaches to the treatment of breast cancer.  相似文献   

2.
Transient receptor potential melastatin 8 (TRPM8) functions as a Ca2+-permeable channel in the plasma membrane (PM). Dysfunction of TRPM8 is associated with human pancreatic cancer and several other diseases in clinical patients, but the underlying mechanisms are unclear. Here, we found that lymphocyte-specific protein tyrosine kinase (LCK) directly interacts with TRPM8 and potentiates TRPM8 phosphorylation at Y1022. LCK positively regulated channel function characterized by increased TRPM8 current densities by enhancing TRPM8 multimerization. Furthermore, 14-3-3ζ interacted with TRPM8 and positively modulated channel multimerization. LCK significantly enhanced the binding of 14-3-3ζ and TRPM8, whereas mutant TRPM8-Y1022F impaired TRPM8 multimerization and the binding of TRPM8 and 14-3-3ζ. Knockdown of 14-3-3ζ impaired the regulation of TRPM8 multimerization by LCK. In addition, TRPM8 phosphotyrosine at Y1022 feedback regulated LCK activity by inhibiting Tyr505 phosphorylation and modulating LCK ubiquitination. Finally, we revealed the importance of TRPM8 phosphorylation at Y1022 in the proliferation, migration, and tumorigenesis of pancreatic cancer cells. Our findings demonstrate that the LCK-14-3-3ζ-TRPM8 axis for regulates TRPM8 assembly, channel function, and LCK activity and maybe provide potential therapeutic targets for pancreatic cancer.Subject terms: Phosphorylation, Paediatric cancer  相似文献   

3.
The TRPM7 (transient receptor potential melastatin 7) channel has been shown to play a pivotal role in cell survival during brain ischaemia as well as in the survival of other cell types challenged with apoptotic stimuli. Ca(2+) is thought to be central to the channel's ability to regulate ROS (reactive oxygen species) production. However, channel-mediated entry of Mg(2+) and Zn(2+) have also been implicated in cell death. In the present study, we show that depletion of TRPM7 by RNA interference in fibroblasts increases cell resistance to apoptotic stimuli by decreasing ROS levels in an Mg(2+)-dependent manner. Depletion of TRPM7 lowered cellular Mg(2+), decreased the concentration of ROS and lessened p38 MAPK (mitogen-activated protein kinase) and JNK (c-Jun N-terminal kinase) activation as well as decreased caspase 3 activation and PARP [poly(ADP-ribose) polymerase] cleavage in response to apoptotic stimuli. Re-expression of TRPM7 or of a kinase-inactive mutant of TRPM7 in TRPM7-knockdown cells increased cellular Mg(2+) and ROS levels, as did expression of the Mg(2+) transporter SLC41A2 (solute carrier family 41 member 2). In addition, expression of SLC41A2 increased the sensitivity of TRPM7-knockdown cells to apoptotic stimuli and boosted ROS generation in response to cell stress. Taken together, these data uncover an essential role for Mg(2+) in TRPM7's control of cell survival and in the regulation of cellular ROS levels.  相似文献   

4.
Protein translation is an essential but energetically expensive process, which is carefully regulated in accordance to the cellular nutritional and energy status. Eukaryotic elongation factor 2 (eEF2) is a central regulation point since it mediates ribosomal translocation and can be inhibited by phosphorylation at Thr56. TRPM7 is the unique fusion of an ion channel with a functional Ser/Thr-kinase. While TRPM7's channel function has been implicated in regulating vertebrate Mg2+ uptake required for cell growth, the function of its kinase domain remains unclear. Here, we show that under conditions where cell growth is limited by Mg2+ availability, TRPM7 via its kinase mediates enhanced Thr56 phosphorylation of eEF2. TRPM7-kinase does not appear to directly phosphorylate eEF2, but rather to influence the amount of eEF2's cognate kinase eEF2-k, involving its phosphorylation at Ser77. These findings suggest that TRPM7's structural duality ensures ideal positioning of its kinase in close proximity to channel-mediated Mg2+ uptake, allowing for the adjustment of protein translational rates to the availability of Mg2+.  相似文献   

5.
TRPM7 is a Ca(2+)- and Mg(2+)-permeable cation channel that also contains a protein kinase domain. While there is general consensus that the channel is inhibited by free intracellular Mg(2+), the functional roles of intracellular levels of Mg.ATP and the kinase domain in regulating TRPM7 channel activity have been discussed controversially. To obtain insight into these issues, we have determined the effect of purine and pyrimidine magnesium nucleotides on TRPM7 currents and investigated the possible involvement of the channel's kinase domain in mediating them. We report here that physiological Mg.ATP concentrations can inhibit TRPM7 channels and strongly enhance the channel blocking efficacy of free Mg(2+). Mg.ADP, but not AMP, had similar, albeit smaller effects, indicating a double protection against possible Mg(2+) and Ca(2+) overflow during variations of cell energy levels. Furthermore, nearly all Mg-nucleotides were able to inhibit TRPM7 activity to varying degrees with the following rank in potency: ATP > TTP > CTP > or = GTP > or = UTP > ITP approximately free Mg(2+) alone. These nucleotides also enhanced TRPM7 inhibition by free Mg(2+), suggesting the presence of two interacting binding sites that jointly regulate TRPM7 channel activity. Finally, the nucleotide-mediated inhibition was lost in phosphotransferase-deficient single-point mutants of TRPM7, while the Mg(2+)-dependent regulation was retained with reduced efficacy. Interestingly, truncated mutant channels with a complete deletion of the kinase domain regained Mg.NTP sensitivity; however, this inhibition did not discriminate between nucleotide species, suggesting that the COOH-terminal truncation exposes the previously inaccessible Mg(2+) binding site to Mg-nucleotide binding without imparting nucleotide specificity. We conclude that the nucleotide-dependent regulation of TRPM7 is mediated by the nucleotide binding site on the channel's endogenous kinase domain and interacts synergistically with a Mg(2+) binding site extrinsic to that domain.  相似文献   

6.
The serine/threonine kinase Mst1, a mammalian homolog of the budding yeast Ste20 kinase, is cleaved by caspase-mediated proteolysis in response to apoptotic stimuli such as ligation of CD95/Fas or treatment with staurosporine. Furthermore, overexpression of Mst1 induces morphological changes characteristic of apoptosis in human B lymphoma cells. Mst1 may therefore represent an important target for caspases during cell death which serves to amplify the apoptotic response. Here we report that Mst1 has two caspase cleavage sites, and we present evidence indicating that cleavage may occur in an ordered fashion and be mediated by distinct caspases. We also show that caspase-mediated cleavage alone is insufficient to activate Mst1, suggesting that full activation of Mst1 during apoptosis requires both phosphorylation and proteolysis. Another role of phosphorylation may be to influence the susceptibility of Mst1 to proteolysis. Autophosphorylation of Mst1 on a serine residue close to one of the caspase sites inhibited caspase-mediated cleavage in vitro. Finally, Mst1 appears to function upstream of the protein kinase MEKK1 in the SAPK pathway. In conclusion, Mst1 activity is regulated by both phosphorylation and proteolysis, suggesting that protein kinase and caspase pathways work in concert to regulate cell death.  相似文献   

7.
Channel-kinase TRPM7/ChaK1 is a member of a recently discovered family of protein kinases called alpha-kinases that display no sequence homology to conventional protein kinases. It is an unusual bifunctional protein that contains an alpha-kinase domain fused to an ion channel. The TRPM7/ChaK1 channel has been characterized using electrophysiological techniques, and recent evidence suggests that it may play a key role in the regulation of magnesium homeostasis. However, little is known about its protein kinase activity. To characterize the kinase activity of TRPM7/ChaK1, we expressed the kinase catalytic domain in bacteria. ChaK1-cat is able to undergo autophosphorylation and to phosphorylate myelin basic protein and histone H3 on serine and threonine residues. The kinase is specific for ATP and cannot use GTP as a substrate. ChaK1-cat is insensitive to staurosporine (up to 0.1 mM) but can be inhibited by rottlerin. Because the kinase domain is physically linked to an ion channel, we investigated the effect of ions on ChaK1-cat activity. The kinase requires Mg(2+) (optimum at 4-10 mM) or Mn(2+) (optimum at 3-5 mM), with activity in the presence of Mn(2+) being 2 orders of magnitude higher than in the presence of Mg(2+). Zn(2+) and Co(2+) inhibited ChaK1-cat kinase activity. Ca(2+) at concentrations up to 1 mM did not affect kinase activity. Considering intracellular ion concentrations, our results suggest that, among divalent metal ions, only Mg(2+) can directly modulate TRPM7/ChaK1 kinase activity in vivo.  相似文献   

8.
Transient receptor potential cation channel, subfamily M, receptor 7 (TRPM7) is a ubiquitous divalent-selective ion channel with its own kinase domain. Human gastric cancer cells express the TRPM7 channel, and the presence of this channel is essential for cell survival. Recent studies have suggested that 5-lipoxygenase (5-LOX) inhibitors are potent blockers of the TRPM7 channels. The aim of this study was to show the effects of 5-LOX inhibitors on the growth and survival of gastric cancer cells. Among 5-LOX inhibitors, nordihydroguaiaretic acid (NDGA), 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), and 3-[1-(p-chlorobenzyl)-5-(isopropyl)-3-tert-butylthioindol-2-yl]-2,2-dimethylpropanoic acid (MK886) were potent blockers of TRPM7-like currents in gastric cancer cells and also induced cell death. However, zileuton was ineffective in suppressing TRPM7-like current activity and inducing cell death. Moreover, a specific transient receptor potential cation channel, subfamily C, member 3 (TRPC3) inhibitor, a pyrazole compound (Pyr3), and a specific melastatin TRP (TRPM4) inhibitor, 9-phenanthrol, did not affect TRPM7-like currents or induce cell death. We conclude that TRPM7 has an important role in the growth and survival of gastric cancer cells and a likely potential target for the pharmacological treatment of gastric cancer.  相似文献   

9.
TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein''s expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE), the product of 5-lipoxygenase, or 5-HPETE''s downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of the TRPM7 channel capable of attenuating TRPM7''s function during cell stress, making them effective tools for the biophysical characterization and suppression of TRPM7 channel conductance in vivo.  相似文献   

10.
TRPM6 and TRPM7 are bifunctional proteins expressing a TRP channel fused to an atypical alpha-kinase domain. While the gating properties of TRPM6 and TRPM7 channels have been studied in detail, little is known about the mechanisms regulating kinase activity. Recently, we found that TRPM7 associates with its substrate myosin II via a kinase-dependent mechanism suggesting a role for autophosphorylation in substrate recognition. Here, we demonstrate that the cytosolic C-terminus of TRPM7 undergoes massive autophosphorylation (32+/-4 mol/mol), which strongly increases the rate of substrate phosphorylation. Phosphomapping by mass spectrometry indicates that the majority of autophosphorylation sites (37 out of 46) map to a Ser/Thr-rich region immediately N-terminal of the catalytic domain. Deletion of this region prevents substrate phosphorylation without affecting intrinsic catalytic activity suggesting that the Ser/Thr-rich domain contributes to substrate recognition. Surprisingly, the TRPM6-kinase is regulated by an analogous mechanism despite a lack of sequence conservation with the TRPM7 Ser/Thr-rich domain. In conclusion, our findings support a model where massive autophosphorylation outside the catalytic domain of TRPM6 and TRPM7 may facilitate kinase-substrate interactions leading to enhanced phosphorylation of those substrates.  相似文献   

11.
Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7   总被引:7,自引:0,他引:7  
TRPM7 is a polypeptide with intrinsic ion channel and protein kinase domains whose targeted deletion causes cells to experience growth arrest within 24 hr and eventually die. Here, we show that while TRPM7's kinase domain is not essential for activation of its channel, a functional coupling exists such that structural alterations of the kinase domain alter the sensitivity of channel activation to Mg(2+). Investigation of the relationship between Mg(2+) and the cell biological role of TRPM7 revealed that TRPM7-deficient cells become Mg(2+) deficient, that both the viability and proliferation of TRPM7-deficient cells are rescued by supplementation of extracellular Mg(2+), and that the capacity of heterologously expressed TRPM7 mutants to complement TRPM7 deficiency correlates with their sensitivity to Mg(2+). Overall, our results indicate that TRPM7 has a central role in Mg(2+) homeostasis as a Mg(2+) uptake pathway regulated through a functional coupling between its channel and kinase domains.  相似文献   

12.
The transient receptor potential channel of melastatin type 8 (TRPM8), which is gated by low (<25 degrees C) temperature and chemical compounds, is regulated by protein kinase C-mediated phosphorylation in a way opposite to that observed with the transient receptor potential channel of vanilloid type 1 (TRPV1), i.e. by being desensitized and not sensitized. As TRPV1 is sensitized also by protein kinase A (PKA)-mediated phosphorylation, we investigated the effect of two activators of the PKA pathway, 8-Br-cAMP and forskolin, on the activity of menthol and icilin at TRPM8 in HEK-293 cells stably overexpressing the channel (TRPM8-HEK-293 cells). We also studied the effect on TRPM8 of: (1) a series of compounds previously shown to activate or antagonize TRPV1, and (2) co-stimulation of transiently co-expressed cannabinoid CB(1) receptors. Both 8-Br-cAMP (100 microM) and forskolin (10 microM) right-shifted the dose-response curves for the TRPM8-mediated effect of icilin and menthol on intracellular Ca(2+). The inhibitory effects of 8-Br-cAMP and forskolin were attenuated by the selective PKA inhibitor Rp-cAMP-S. Stimulation of human CB(1) receptors transiently co-expressed in TRPM8-HEK-293 cells also inhibited TRPM8 response to icilin. Finally, some TRPV1 agonists and antagonists, but not iodinated antagonists, antagonized icilin- and much less so menthol-, induced TRPM8 activation. Importantly, the endovanilloids/endocannabinoids, anandamide and NADA, also antagonized TRPM8 at submicromolar concentrations. Although these findings need to be confirmed by experiments directly measuring TRPM8 activity in natively TRPM8-expressing cells, they support the notion that the same regulatory events have opposing actions on TRPM8 and TRPV1 receptors and identify anandamide and NADA as the first potential endogenous functional antagonists of TRPM8 channels.  相似文献   

13.
Cold/menthol-activated TRPM8 (transient receptor potential channel melastatin member 8) is primarily expressed in sensory neurons, where it constitutes the principal receptor of environmental innocuous cold. TRPM8 has been shown to be regulated by multiple influences such as phosphorylation, pH, Ca(2+), and lipid messengers. One such messenger is arachidonic acid (AA), which has been shown to inhibit TRPM8 channel activity. However, the physiological pathways mediating the inhibitory effect of AA on TRPM8 still remain unknown. Here, we demonstrate that TRPM8 is regulated via M3 muscarinic acetylcholine receptor-coupled signaling cascade based on the activation of cytosolic phospholipase A2 (cPLA2) and cPLA2-catalyzed derivation of AA. Stimulation of M3 receptors heterologously co-expressed with TRPM8 in HEK-293 cells by nonselective muscarinic agonist, oxotremorine methiodide (Oxo-M), caused inhibition of TRPM8-mediated membrane current, which could be mimicked by AA and antagonized by pharmacological or siRNA-mediated cPLA2 silencing. Our results demonstrate the intracellular functional link between M3 receptor and TRPM8 channel via cPLA2/AA and suggest a novel physiological mechanism of arachidonate-mediated regulation of TRPM8 channel activity through muscarinic receptors. We also summarize the existing TRPM8 regulations and discuss their physiological and pathological significance.  相似文献   

14.
TRPM7/ChaK1 is a unique channel/kinase that contains a TRPM channel domain with 6 transmembrane segments fused to a novel serine-threonine kinase domain at its C terminus. The goal of this study was to investigate a possible role of kinase activity and autophosphorylation in regulation of channel activity of TRPM7/ChaK1. Residues essential for kinase activity were identified by site-directed mutagenesis. Two major sites of autophosphorylation were identified in vitro by mass spectrometry at Ser(1511) and Ser(1567), and these sites were found to be phosphorylated in intact cells. TRPM7/ChaK1 is a cation-selective channel that exhibits strong outward rectification and inhibition by millimolar levels of internal [Mg(2+)]. Mutation of the two autophosphorylation sites or of a key catalytic site that abolished kinase activity did not alter channel activity measured by whole-cell recording or Ca(2+) influx. Inhibition by internal Mg(2+) was also unaffected in the autophosphorylation site or "kinase-dead" mutants. Moreover, kinase activity was enhanced by Mg(2+), was decreased by Zn(2+), and was unaffected by Ca(2+). In contrast, channel activity was inhibited by all three of these divalent cations. However, deletion of much of C-terminal kinase domain resulted in expression of an apparently inactive channel. We conclude that neither current activity nor regulation by internal Mg(2+) is affected by kinase activity or autophosphorylation but that the kinase domain may play a structural role in channel assembly or subcellular localization.  相似文献   

15.
m-Calpain is a protease implicated in the control of cell adhesion through focal adhesion disassembly. The mechanism by which the enzyme is spatially and temporally controlled is not well understood, particularly because the dependence of calpain on calcium exceeds the submicromolar concentrations normally observed in cells. Here we show that the channel kinase TRPM7 localizes to peripheral adhesion complexes with m-calpain, where it regulates cell adhesion by controlling the activity of the protease. Our research revealed that overexpression of TRPM7 in cells caused cell rounding with a concomitant loss of cell adhesion that is dependent upon the channel of the protein but not its kinase activities. Knockdown of m-calpain blocked TRPM7-induced cell rounding and cell detachment. Silencing of TRPM7 by RNA interference, however, strengthened cell adhesion and increased the number of peripheral adhesion complexes in the cells. Together, our results suggest that the ion channel TRPM7 regulates cell adhesion through m-calpain by mediating the local influx of calcium into peripheral adhesion complexes.  相似文献   

16.
The channel kinases TRPM6 and TRPM7 are functionally nonredundant   总被引:1,自引:0,他引:1  
TRPM7 and its closest homologue, TRPM6, are the only known fusions of an ion channel pore with a kinase domain. Deletion of TRPM7 in DT40 B-lymphocytes causes growth arrest, Mg(2+) deficiency, and cell death within 24-48 h. Amazingly, in analogy to TRPM6-deficient patients who can live a normal life if provided with a Mg(2+)-rich diet, TRPM7-deficient DT40 B-lymphocytes show wild type cell growth if supplied with 5-10 mm Mg(2+) concentrations in their extracellular medium. Here we have investigated the functional relationship between TRPM6 and TRPM7. We show that TRPM7 deficiency in DT40 cells cannot be complemented by heterologously expressed TRPM6. Nevertheless, both channels can influence each other's biological activity. Our data demonstrate that TRPM6 requires TRPM7 for surface expression in HEK-293 cells and also that TRPM6 is capable of cross-phosphorylating TRPM7 as assessed using a phosphothreonine-specific antibody but not vice versa. TRPM6 and TRPM7 coexpression studies in DT40 B-cells indicate that TRPM6 can modulate TRPM7 function. In conclusion, although TRPM6 and TRPM7 are closely related and deficiency in either one of these molecules severely affects Mg(2+) homeostasis regulation, TRPM6 and TRPM7 do not appear to be functionally redundant but rather two unique and essential components of vertebrate ion homeostasis regulation.  相似文献   

17.
TRPM7 is a ubiquitously expressed cation channel with a fused alpha kinase domain. It is highly permeable to magnesium and calcium, and is negatively gated by intracellular Mg(2+) and Mg-ATP. Substrates for the TRPM7 kinase domain include annexinA1 and myosin IIA heavy chain, and there is evidence to suggest a functional interaction between the channel and kinase domains. Alterations in the expression and activity of TRPM7 have profound effects on cell proliferation and differentiation. Genetic deletion of TRPM7 in model systems demonstrates that this channel is critical for cellular growth and embryonic development. Here, we provide a brief overview of the activity of TRPM7 and the associated regulatory mechanisms. We will then discuss the biological functions of TRPM7, emphasizing its role in development and the potential pathophysiological significance of TRPM7 in neurological and cardiovascular disease.  相似文献   

18.
The activity of the TRPM7 channel is negatively regulated by intracellular Mg2+. We previously reported that oxidative stress enhances the inhibition of TRPM7 by intracellular Mg2+. Here, we aimed to clarify the mechanism underlying TRPM7 inhibition by hydrogen peroxide (H2O2). Site-directed mutagenesis of full-length TRPM7 revealed that none of the cysteines other than C1809 and C1813 within the zinc-binding motif of the TRPM7 kinase domain were involved in the H2O2-induced TRPM7 inhibition. Mutation of C1809 or C1813 prevented expression of full-length TRPM7 on the plasma membrane. We therefore developed an assay to functionally reconstitute full-length TRPM7 by coexpressing the TRPM7 channel domain (M7cd) and the TRPM7 kinase domain (M7kd) as separate proteins in HEK293 cells. When M7cd was expressed alone, the current was inhibited by intracellular Mg2+ more strongly than that of full-length TRPM7 and was insensitive to oxidative stress. Coexpression of M7cd and M7kd attenuated the inhibition by intracellular Mg2+ and restored sensitivity to oxidative stress, indicating successful reconstitution of a full-length TRPM7-like current. We observed a similar effect when M7cd was coexpressed with the kinase-inactive mutant M7kd-K1645R, suggesting that the kinase activity is not essential for the reconstitution. However, coexpression of M7cd and M7kd carrying a mutation at either C1809 or C1813 failed to restore the full-length TRPM7-like current. No reconstitution was observed when using M7kd carrying a mutation at H1750 and H1807, which are involved in the zinc-binding motif formation with C1809 and C1813. These data suggest that the zinc-binding motif is essential for the intracellular Mg2+-dependent regulation of the TRPM7 channel activity by its kinase domain and that the cysteines in the zinc-binding motif play a role in the oxidative stress response of TRPM7.  相似文献   

19.
Phosphorylation of annexin I by TRPM7 channel-kinase   总被引:1,自引:0,他引:1  
TRPM7 is an unusual bifunctional molecule consisting of a TRP ion channel fused to a protein kinase domain. It has been shown that TRPM7 plays a key role in the regulation of intracellular magnesium homeostasis as well as in anoxic neuronal death. TRPM7 channel has been characterized using electrophysiological techniques; however, the function of the kinase domain is not known and endogenous substrates for the kinase have not been reported previously. Here we have identified annexin 1 as a substrate for TRPM7 kinase. Phosphorylation of annexin 1 by TRPM7 kinase is stimulated by Ca2+ and is dramatically increased in extracts from cells overexpressing TRPM7. Phosphorylation of annexin 1 by TRPM7 kinase occurs at a conserved serine residue (Ser5) located within the N-terminal amphipathic alpha-helix of annexin 1. The N-terminal region plays a crucial role in interaction of annexin 1 with other proteins and membranes, and therefore, phosphorylation of annexin 1 at Ser5 by TRPM7 kinase may modulate function of annexin 1.  相似文献   

20.
Transient receptor potential cation channel subfamily M member 7 (TRPM7) composed of an ion channel and a kinase domain regulates triple-negative breast cancer (TNBC) cell migration, invasion, and metastasis, but it does not modulate TNBC proliferation. However, previous studies have shown that the combination treatment of nonselective TRPM7 channel inhibitors (2-aminoethoxydiphenyl borate and Gd3+) with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) increases antiproliferative effects and apoptosis in prostate cancer cells and hepatic stellate cells. We, therefore, investigated the potential role of TRPM7 in proliferation and apoptosis of TNBC cells (MDA-MB-231 and MDA-MB-468 cells) with TRAIL. We demonstrated that suppression of TRPM7 via TRPM7 knockdown or pharmacological inhibition synergistically increases TRAIL-induced antiproliferative effects and apoptosis in TNBC cells. Furthermore, we showed that the synergistic interaction might be associated with TRPM7 channel activities using combination treatments of TRAIL and TRPM7 inhibitors (NS8593 as a TRPM7 channel inhibitor and TG100-115 as a TRPM7 kinase inhibitor). We reveal that downregulation of cellular FLICE-inhibitory protein via inhibition of Ca2+ influx might be involved in the synergistic interaction. Our study would provide both a new role of TRPM7 in TNBC cell apoptosis and a potential combinatorial therapeutic strategy using TRPM7 inhibitors with TRAIL in the treatment of TNBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号