首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNase/alkaline exonuclease (AE) genes are well conserved in all herpesvirus families, but recent studies have shown that the AE proteins of gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) exhibit an additional function which shuts down host protein synthesis. One correlate of this additional shutoff function is that levels of cell surface HLA molecules are downregulated, raising the possibility that shutoff/AE genes of gammaherpesviruses might contribute to viral immune evasion. In this study, we show that both BGLF5 (EBV) and SOX (KSHV) shutoff/AE proteins do indeed impair the ability of virus-specific CD8+ T-cell clones to recognize endogenous antigen via HLA class I. Random mutagenesis of the BGLF5 gene enabled us to genetically separate the shutoff and AE functions and to demonstrate that the shutoff function was the critical factor determining whether BGLF5 mutants can impair T-cell recognition. These data provide further evidence that EBV has multiple mechanisms to modulate HLA class I-restricted T-cell responses, thus enabling the virus to replicate and persist in the immune-competent host.  相似文献   

2.
The Kaposi's sarcoma-associated herpesvirus (KSHV) SOX protein, encoded by ORF37, promotes shutoff of host cell gene expression during lytic viral replication by dramatically impairing mRNA accumulation. SOX is the KSHV homolog of the alkaline exonuclease of other herpesviruses, which has been shown to function as a DNase involved in processing and packaging the viral genome. Although the exonuclease activity of these proteins is widely conserved across all herpesviruses, the host shutoff activity observed for KSHV SOX is not. We show here that SOX expression sharply reduces the half-life of target mRNAs. Extensive mutational analysis reveals that the DNase and host shutoff activities of SOX are genetically separable. Lesions affecting the DNase activity cluster in conserved regions of the protein, but residues critical for mRNA degradation are not conserved across the viral family. Additionally, we present evidence suggesting that the two different functions of SOX occur within distinct cellular compartments-DNase activity in the nucleus and host shutoff activity in the cytoplasm.  相似文献   

3.
4.
The early lytic phase of Kaposi's sarcoma herpesvirus infection is characterized by viral replication and the global degradation (shutoff) of host mRNA. Key to both activities is the virally encoded alkaline exonuclease KSHV SOX. While the DNase activity of KSHV SOX is required for the resolution of viral genomic DNA as a precursor to encapsidation, its exact involvement in host shutoff remains to be determined. We present the first crystal structure of a KSHV SOX-DNA complex that has illuminated the catalytic mechanism underpinning both its endo and exonuclease activities. We further illustrate that KSHV SOX, similar to its Epstein-Barr virus homologue, has an intrinsic RNase activity in vitro that although an element of host shutoff, cannot solely account for the phenomenon.  相似文献   

5.
6.
7.
Studies of nucleic acid homology suggest the BGLF5 open reading frame of Epstein-Barr virus (EBV) encodes an alkaline deoxyribonuclease (DNase) sharing some homology with that of herpes simplex virus. We report here the expression of the BGLF5 open reading frame in E. coli and the expression of high levels of a novel alkaline DNase activity in induced cells. This alkaline DNase has been purified to apparent homogeneity as a single protein species. This is the first report of the expression of a herpesvirus coded DNase in a prokaryotic system and of the purification of the EBV DNase to demonstrable purity. It has the biochemical characteristics of a typical herpesvirus alkaline exonuclease showing a high pH optimum, an absolute requirement for Mg2+ for activity and sensitivity to high salt concentrations and polyamines. The enzyme activity was neutralized by sera from patients with nasopharyngeal carcinoma and was reactive with these sera in Western blot analysis. Thus the prokaryotic expression system described here provides an economical and efficient source of the EBV DNase for biochemical and seroepidemiological analysis.  相似文献   

8.
Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors.  相似文献   

9.
Earlier studies have shown that translation elongation factor 1delta (EF-1delta) is hyperphosphorylated in various mammalian cells infected with representative alpha-, beta-, and gammaherpesviruses and that the modification is mediated by conserved viral protein kinases encoded by herpesviruses, including UL13 of herpes simplex virus type 1 (HSV-1), UL97 of human cytomegalovirus, and BGLF4 of Epstein-Barr virus (EBV). In the present study, we attempted to identify the site in EF-1delta associated with the hyperphosphorylation by the herpesvirus protein kinases. Our results are as follows: (i) not only in infected cells but also in uninfected cells, replacement of the serine residue at position 133 (Ser-133) of EF-1delta by alanine precluded the posttranslational processing of EF-1delta, which corresponds to the hyperphosphorylation. (ii) A purified chimeric protein consisting of maltose binding protein (MBP) fused to a domain of EF-1delta containing Ser-133 (MBP-EFWt) is specifically phosphorylated in in vitro kinase assays by purified recombinant UL13 fused to glutathione S-transferase (GST) expressed in the baculovirus system. In contrast, the level of phosphorylation by the recombinant UL13 of MBP-EFWt carrying an alanine replacement of Ser-133 (MBP-EFS133A) was greatly impaired. (iii) MBP-EFWt is also specifically phosphorylated in vitro by purified recombinant BGLF4 fused to GST expressed in the baculovirus system, and the level of phosphorylation of MBP-EFS133A by the recombinant BGLF4 was greatly reduced. (iv) The sequence flanking Ser-133 of EF-1delta completely matches the consensus phosphorylation site for a cellular protein kinase, cdc2, and in vitro kinase assays revealed that purified cdc2 phosphorylates Ser-133 of EF-1delta. (v) As observed with EF-1delta, the casein kinase II beta subunit (CKIIbeta) was specifically phosphorylated by UL13 in vitro, while the level of phosphorylation of CKIIbeta by UL13 was greatly diminished when a serine residue at position 209, which has been reported to be phosphorylated by cdc2, was replaced with alanine. These results indicate that the conserved protein kinases encoded by herpesviruses and a cellular protein kinase, cdc2, have the ability to target the same amino acid residues for phosphorylation. Our results raise the possibility that the viral protein kinases mimic cdc2 in infected cells.  相似文献   

10.
The BGLF4 protein kinase of Epstein-Barr virus (EBV) is a member of the conserved family of herpesvirus protein kinases which, to some extent, have a function similar to that of the cellular cyclin-dependent kinase in regulating multiple cellular and viral substrates. In a yeast two-hybrid screening assay, a splicing variant of interferon (IFN) regulatory factor 3 (IRF3) was found to interact with the BGLF4 protein. This interaction was defined further by coimmunoprecipitation in transfected cells and glutathione S-transferase (GST) pull-down in vitro. Using reporter assays, we show that BGLF4 effectively suppresses the activities of the poly(I:C)-stimulated IFN-β promoter and IRF3-responsive element. Moreover, BGLF4 represses the poly(I:C)-stimulated expression of endogenous IFN-β mRNA and the phosphorylation of STAT1 at Tyr701. In searching for a possible mechanism, BGLF4 was shown not to affect the dimerization, nuclear translocation, or CBP recruitment of IRF3 upon poly(I:C) treatment. Notably, BGLF4 reduces the amount of active IRF3 recruited to the IRF3-responsive element containing the IFN-β promoter region in a chromatin immunoprecipitation assay. BGLF4 phosphorylates GST-IRF3 in vitro, but Ser339-Pro340 phosphorylation-dependent, Pin1-mediated downregulation is not responsible for the repression. Most importantly, we found that three proline-dependent phosphorylation sites at Ser123, Ser173, and Thr180, which cluster in a region between the DNA binding and IRF association domains of IRF3, contribute additively to the BGLF4-mediated repression of IRF3(5D) transactivation activity. IRF3 signaling is activated in reactivated EBV-positive NA cells, and the knockdown of BGLF4 further stimulates IRF3-responsive reporter activity. The data presented here thus suggest a novel mechanism by which herpesviral protein kinases suppress host innate immune responses and facilitate virus replication.  相似文献   

11.
Previous studies of Epstein-Barr virus (EBV) replication focused mainly on the viral and cellular factors involved in replication compartment assembly and controlling the cell cycle. However, little is known about how EBV reorganizes nuclear architecture and the chromatin territories. In EBV-positive nasopharyngeal carcinoma NA cells or Akata cells, we noticed that cellular chromatin becomes highly condensed upon EBV reactivation. In searching for the possible mechanisms involved, we found that transient expression of EBV BGLF4 kinase induces unscheduled chromosome condensation, nuclear lamina disassembly, and stress fiber rearrangements, independently of cellular DNA replication and Cdc2 activity. BGLF4 interacts with condensin complexes, the major components in mitotic chromosome assembly, and induces condensin phosphorylation at Cdc2 consensus motifs. BGLF4 also stimulates the decatenation activity of topoisomerase II, suggesting that it may induce chromosome condensation through condensin and topoisomerase II activation. The ability to induce chromosome condensation is conserved in another gammaherpesvirus kinase, murine herpesvirus 68 ORF36. Together, these findings suggest a novel mechanism by which gammaherpesvirus kinases may induce multiple premature mitotic events to provide more extrachromosomal space for viral DNA replication and successful egress of nucleocapsid from the nucleus.  相似文献   

12.
Herpesviruses, which are major human pathogens, establish life-long persistent infections. Although the α, β, and γ herpesviruses infect different tissues and cause distinct diseases, they each encode a conserved serine/threonine kinase that is critical for virus replication and spread. The extent of substrate conservation and the key common cell-signaling pathways targeted by these kinases are unknown. Using a human protein microarray high-throughput approach, we identify shared substrates of the conserved kinases from herpes simplex virus, human cytomegalovirus, Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus. DNA damage response (DDR) proteins were statistically enriched, and the histone acetyltransferase TIP60, an upstream regulator of the DDR pathway, was required for efficient herpesvirus replication. During EBV replication, TIP60 activation by the BGLF4 kinase triggers EBV-induced DDR and also mediates induction of viral lytic gene expression. Identification of key cellular targets of the conserved herpesvirus kinases will facilitate the development of broadly effective antiviral strategies.  相似文献   

13.
Epstein–Barr Virus (EBV) DNase (BGLF5) is an alkaline nuclease and has been suggested to be important in the viral life cycle. However, its effect on host cells remains unknown. Serological and histopathological studies implied that EBV DNase seems to be correlated with carcinogenesis. Therefore, we investigate the effect of EBV DNase on epithelial cells. Here, we report that expression of EBV DNase induces increased formation of micronucleus, an indicator of genomic instability, in human epithelial cells. We also demonstrate, using γH2AX formation and comet assay, that EBV DNase induces DNA damage. Furthermore, using host cell reactivation assay, we find that EBV DNase expression repressed damaged DNA repair in various epithelial cells. Western blot and quantitative PCR analyses reveal that expression of repair-related genes is reduced significantly in cells expressing EBV DNase. Host shut-off mutants eliminate shut-off expression of repair genes and repress damaged DNA repair, suggesting that shut-off function of BGLF5 contributes to repression of DNA repair. In addition, EBV DNase caused chromosomal aberrations and increased the microsatellite instability (MSI) and frequency of genetic mutation in human epithelial cells. Together, we propose that EBV DNase induces genomic instability in epithelial cells, which may be through induction of DNA damage and also repression of DNA repair, subsequently increases MSI and genetic mutations, and may contribute consequently to the carcinogenesis of human epithelial cells.  相似文献   

14.
Epstein-Barr virus (EBV) BGLF4 is a viral protein kinase that is expressed in the lytic phase of infection and is packaged in virions. We report here that BGLF4 is a tegument protein that dissociates from the virion in a phosphorylation-dependent process. We also present evidence that BGLF4 interacts with and phosphorylates BZLF1, a key viral regulator of lytic infection. These conclusions are based on the following observations. (i) In in vitro tegument release assays, a significant fraction of BGLF4 was released from virions in the presence of physiological NaCl concentrations. (ii) Addition of physiological concentrations of ATP and MgCl(2) to virions enhanced BGLF4 release, but phosphatase treatment of virions significantly reduced BGLF4 release. (iii) A recombinant protein containing a domain of BZLF1 was specifically phosphorylated by purified recombinant BGLF4 in vitro, and BGLF4 altered BZLF1 posttranslational modification in vivo. (iv) BZLF1 was specifically coimmunoprecipitated with BGLF4 in 12-O-tetradecanoylphorbol-13-acetate-treated B95-8 cells and in COS-1 cells transiently expressing both of these viral proteins. (v) BGLF4 and BZLF1 were colocalized in intranuclear globular structures, resembling the viral replication compartment, in Akata cells treated with anti-human immunoglobulin G. Our results suggest that BGLF4 functions not only in lytically infected cells by phosphorylating viral and cellular targets but also immediately after viral penetration like other herpesvirus tegument proteins.  相似文献   

15.
16.
The Epstein-Barr virus (EBV) open reading frame BGLF4 was identified as a potential Ser/Thr protein kinase gene through the recognition of amino acid sequence motifs characteristic of conserved regions within the catalytic domains of protein kinases. In order to investigate this potential kinase activity, BGLF4 was expressed in Escherichia coli and the purified protein was used to generate a specific antiserum. Recombinant vaccinia virus vTF7-3, which expresses the T7 RNA polymerase, was used to infect 293 and 293T cells after transient transfection with a plasmid containing BGLF4 under the control of the T7 promoter. Autophosphorylation of the BGLF4 protein was demonstrated using the specific antiserum in an immune complex kinase assay. In addition, EBNA-1-tagged BGLF4 and EBNA-1 monoclonal antibody 5C11 were used to demonstrate the specificity of the kinase activity and to locate BGLF4 in the cytoplasm of transfected cells. Manganese ions were found to be essential for autophosphorylation of BGLF4, and magnesium can stimulate the activity. BGLF4 can utilize GTP, in addition to ATP, as a phosphate donor in this assay. BGLF4 can phosphorylate histone and casein in vitro. Among the potential viral protein substrates we examined, the EBV early antigen (EA-D, BMRF1), a DNA polymerase accessory factor and an important transactivator during lytic infection, was found to be phosphorylated by BGLF4 in vitro. Amino acids 1 to 26 of BGLF4, but not the predicted conserved catalytic domain, were found to be essential for autophosphorylation of BGLF4.  相似文献   

17.
Infection with gammaherpesviruses, alphaherpesviruses, and betacoronaviruses can result in widespread mRNA degradation, in each case initiated predominantly by a single viral factor. Although not homologous, these factors exhibit significant mechanistic similarities. In cells, each targets translatable RNAs for cleavage and requires host Xrn1 to complete RNA degradation, although the mechanism of targeting and the position of the primary cleavage differ. Thus, multiple host shutoff factors have converged upon a common mRNA degradation pathway.  相似文献   

18.
We have recently obtained 18 distinct cDNA clones representing different genes expressed in the early phase of EBV infection. One of them, c37, which is situated at the position 12907-122451 in the B95-8 viral genome, is shown here to code for a viral desoxyribonuclease [DNase]. Cell free translation of c37-selected messenger RNA yielded a protein of about 52 KDa which was immunoprecipitated by a high EA titer serum from nasopharyngeal carcinoma patient. This protein showed a DNase activity which was resistant to high salt concentrations (150 to 300 mM KCl) and was specifically neutralized by EA positive serum. These properties are typical of the EBV-specific DNase activity that we recently described in chemically induced EBV-transformed lymphoid cells. The same results were obtained on cell-free translation of the native RNA synthesized in vitro from pGEM-37 plasmid containing the entire c37 cDNA sequence (1.53 Kb). These data indicate that the BGLF5 open reading frame contained in c37 encodes for the EBV-specific DNase.  相似文献   

19.
Adenovirus-induced inhibition of cellular DNase.   总被引:7,自引:4,他引:3       下载免费PDF全文
During the productive infection of KB cells by adenovirus type 5 (Ad5), there is a progressive decrease in the level of cellular DNase activity towards single-stranded DNA, in contrast to DNA polymerase which remains relatively constant throughout the infection. This decrease is prevented by the inhibition of protein synthesis by cycloheximide. The inhibition of DNase activity does not occur after infection by Ad5 ts125, a DNA-negative mutant which fails to induce the adenovirus-specific DNA binding protein. In contrast, infection by Ad5 ts36, a DNA-negative mutant which complements ts125, does result in decreased levels of DNase. A mechanism is discussed in which the DNA binding protein protects viral replicative intermediates from degradation by cellular DNase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号