首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electromyographic activity of expiratory muscles in the rat   总被引:2,自引:0,他引:2  
We examined the participation of expiratory muscles on breathing in the rat. The experiments were performed on 16 male rats in halothane [1.5%] or urethane [1.3 g/kg i.p.] anaesthesia. We recorded the electromyographic [EMG] activity of intercostal and abdominal muscles with a concentric needle electrode during quiet breathing, breathing against increased pressure in the airways and during the expiration reflex. In halothane anaesthesia the EMG expiratory phasic activity was observed only in internal intercostal muscles in 40% of spots examined during quiet breathing and in 58.5% when breathing against increased pressure. The EMG activity during the expiratory reflex was difficult to evaluate. In the abdominal muscles permanent EMG activity was found in 66% of trials. In urethane anaesthesia no phasic expiratory EMG activity was observed in intercostal or abdominal muscles. In abdominal muscles in 9% of trials a permanent activity was found.  相似文献   

2.
This study examined the involvement of spinal mechanisms in the control of coactivation during a sustained contraction of the ankle dorsiflexors at 50% of maximal voluntary contraction. Changes in the surface electromyogram (EMG) of the tibialis anterior and of two antagonist muscles, the soleus and lateral gastrocnemius, were investigated during and after the fatigue task. Concurrently, the compound action potential (M-wave) and the Hoffmann reflex of the soleus and lateral gastrocnemius were recorded. The results showed that the torque of the ankle dorsiflexors and the average EMG of the tibialis anterior during maximal voluntary contraction declined by 40.9 +/- 17.7% (mean +/- SD; P < 0.01) and 37.0 +/- 19.9% (P < 0.01), respectively, at task failure. During the submaximal fatiguing contraction, the average EMG of both the agonist and antagonist muscles increased, leading to a nearly constant ratio at the end of the contraction when normalized to postfatigue values. In contrast to the monotonic increase in average EMG of the antagonist muscles, the excitability of their spinal reflex pathways exhibited a biphasic modulation. The amplitude of the Hoffman reflexes in the soleus and lateral gastrocnemius increased to 147.5 +/- 52.9% (P < 0.05) and 166.7 +/- 74.9% (P < 0.01), respectively, during the first 20% of the contraction and then subsequently declined to 66.3 +/- 44.8 and 74.4 +/- 44.2% of their initial values. In conclusion, the results show that antagonist coactivation did not contribute to task failure. The different changes in voluntary EMG activity and spinal reflex excitability in the antagonist muscles during the fatiguing contraction support the concept that the level of coactivation is controlled by supraspinal rather than spinal mechanisms. The findings indicate, however, that antagonist coactivation cannot simply be mediated by a central descending "common drive" to the motor neuron pools of the agonist-antagonist muscle pairs. Rather, they suggest a more subtle regulation of the drive, possibly through presynaptic mechanisms, to the motoneurons that innervate the antagonist muscles.  相似文献   

3.
Hypoxia can depress ventilation, respiratory load sensation, and the cough reflex, and potentially other protective respiratory reflexes such as respiratory muscle responses to increased respiratory load. In sleep-disordered breathing, increased respiratory load and hypoxia frequently coexist. This study aimed to examine the effects of hypoxia on the reflex responses of 1) the genioglossus (the largest upper airway dilator muscle) and 2) the scalene muscle (an obligatory inspiratory muscle) to negative-pressure pulse stimuli during wakefulness and sleep. We hypothesized that hypoxia would impair these reflex responses. Fourteen healthy men, 19-42 yr old, were studied on two separate occasions, approximately 1 wk apart. Bipolar fine-wire electrodes were inserted orally into the genioglossus muscle, and surface electrodes were placed overlying the left scalene muscle to record EMG activity. In random order, participants were exposed to mild overnight hypoxia (arterial oxygen saturation approximately 85%) or medical air. Respiratory muscle reflex responses were elicited via negative-pressure pulse stimuli (approximately -10 cmH(2)O at the mask, 250-ms duration) delivered in early inspiration during wakefulness and sleep. Negative-pressure pulse stimuli resulted in a short-latency activation followed by a suppression of the genioglossus EMG that did not alter with hypoxia. Conversely, the predominant response of the scalene EMG to negative-pressure pulse stimuli was suppression followed by activation with more pronounced suppression during hypoxia compared with normoxia (mean +/- SE suppression duration 64 +/- 6 vs. 38 +/- 6 ms, P = 0.006). These results indicate differential sensitivity to the depressive effects of hypoxia in the reflex responsiveness to sudden respiratory loads to breathing between these two respiratory muscles.  相似文献   

4.
A procedure is described for making an implantable electrode array for recording EMG activity in muscles of awake, unrestrained animals (rats and cats) at rest, during rhythmic activity and in response to various reflexogenic stimuli. The electrode array consists of a percutaneous connector (covered with Dow-Corning Silastic Medical Adhesive), steel wire spiral leads contained in silicone tubing and silicone plate probes with platinum electrodes. These plate probes can be fixed either to the bone underneath the muscle, slipped under the fascia, or fixed between muscles. EMG records are presented of postural activity and ambulation in rats, mastication in cats and unilateral and bilateral spinal and supraspinal reflex responses in rat hind limb muscles up to 6 months after implantation. The advantages (and drawbacks) of this technique and its possible uses in neurophysiology are enumerated in the discussion.  相似文献   

5.
A Lecci  S Giuliani  C A Maggi 《Life sciences》1992,51(26):PL277-PL280
The effect of intrathecal administration of the novel tachykinin NK-1 receptor antagonist GR 82,334 has been tested in three reflexes which excite urinary bladder motility. GR 82,334 at 1 but not at 0.1 nmol/rat blocked the chemonociceptive micturition reflex induced by the topical application of capsaicin (4 micrograms/50 microliters) onto the urinary bladder. At the same dose proven effective in the chemonociceptive reflex, GR 82,334 did not affect either micturition reflex induced by bladder filling or the urinary bladder contraction induced by perineal pinching. These results suggest that, in urethane-anesthetized rats, specific stimuli applied in the periphery activate NK-1 receptors at spinal cord level facilitating urinary bladder reflex contractions.  相似文献   

6.
The background activity of the guinea pig caudal mesenteric ganglion (CMG) neurons and their reflex reactions to colonic distension were studied on isolated combined preparations including the CMG and a colon segment connected with the lumbar colonic nerves. In the control, 62% of the neurons under study generated background activity, which consisted of irregular or regular “fast” excitatory postsynaptic potentials (fEPSP) and action potentials (AP). In 27% of the CMG neurons called “pacemaker-like neurons” (PLN), the background activity was represented by highly regular AP never observed in the CMG completely isolated from the distal colon. Reflex responses evoked by colonic distension were recorded from 76% of the units studied. The distension evoked fEPSP and AP in “silent” neurons and increased the background activity. Both the background activity and reflex responses were shown to be due to nicotinic cholinergic transmission. In some neurons, reflex responses (regular AP) were generated as superimposed on a slow depolarization; the latter was insensitive to nicotinic antagonists and either sensitive or insensitive to muscarinic antagonists. It has been concluded that CMG neurons receive nicotinic, muscarinic, and, probably, peptidergic afferent inputs from the distal colon. Although there are no true pacemaker neurons in CMG, some neurons generate pacemaker-like activity of a synaptic origin.  相似文献   

7.
We present observations on the multicyclic scratch reflex in spinal terrapins as produced by electrical stimuli applied to the shell at the specific regions at which a mechanical stimulus produces the reflex. EMGs and hip and knee movements are recorded. The responses to the electrical stimuli are similar to the responses to mechanical stimuli. There is a three phase EMG pattern (Stein and Grossman, 1980), to which the movement pattern is related (Bakker and Crowe, 1982). A response may consist of a series of up to 25 movement cycles with a total time course of up to about 30 sec. The initial cycles of a response are relatively fast (less than 1 sec), but the cycles at the expiration of the response may have a duration of 2-3 sec. A single electrical stimulus pulse is often insufficient to trigger a series response. Instead, a weak EMG burst of a few tenths of a second duration, together with a slight movement, is often seen. However, a second pulse can set the cycle series in motion even after an interval of 40 sec between the pulses. A further booster stimulus pulse given while a reflex response is taking place can increase the speed of the movement. If the booster pulse is given just after cessation of reflex activity it can restart the activity, but this second cycle series is often shorter than the first one. The results indicate that the excitability of the central program generator is not constant. Long duration changes in the excitability are produced within the spinal cord.  相似文献   

8.
Mechanical oscillation (vibration) is an osteogenic stimulus for bone in animal models and may hold promise as an anti-osteoporosis measure in humans with spinal cord injury (SCI). However, the level of reflex induced muscle contractions associated with various loads (g force) during limb segment oscillation is uncertain. The purpose of this study was to determine whether certain gravitational loads (g forces) at a fixed oscillation frequency (30 Hz) increases muscle reflex activity in individuals with and without SCI. Nine healthy subjects and two individuals with SCI sat with their hip and knee joints at 90° and the foot secured on an oscillation platform. Vertical mechanical oscillations were introduced at 0.3, 0.6, 1.2, 3 and 5g force for 20 s at 30 Hz. Non-SCI subjects received the oscillation with and without a 5% MVC background contraction. Peak soleus and tibialis anterior (TA) EMG were normalized to M-max. Soleus and TA EMG were <2.5% of M-max in both SCI and non-SCI subjects. The greatest EMG occurred at the highest acceleration (5g). Low magnitude mechanical oscillation, shown to enhance bone anabolism in animal models, did not elicit high levels of reflex muscle activity in individuals with and without SCI. These findings support the g force modulated background muscle activity during fixed frequency vibration. The magnitude of muscle activity was low and likely does not influence the load during fixed frequency oscillation of the tibia.  相似文献   

9.
Optical marker tracing methods have been applied successfully in recent years to quantify local material deformation of heart tissue, skin and striated muscles. In this study, polystyrene fluorescent spheres (d = 0.6 mm) are glued to the ventral serosal bladder wall in the rabbit. Three dimensional video registration of the polystyrene spheres is used to calculate two directions of principal strain (epsilon (1), epsilon (2) ) on the bladder surface in vivo. The aim is to investigate the feasibility of the technique for this new application in two experimental circumstances: during spontaneous bladder wall activity and after electrical stimulation of bladder innervating nerve fibers. During spontaneous activity, random contraction and relaxation occurred simultaneously and separately across the bladder wall for the two principal strains epsilon (1) and epsilon (2). After extradural electrical stimulation of sacral nerve root S2, the principal strains epsilon ( 1) and epsilon (2) synchronized in time in such a way that epsilon ( 1) and epsilon (2) both represented contraction or both represented relaxation. One and the same bladder wall area passed through phases of contraction followed by relaxation and vice versa. After multiple stimulation periods, the coordination between the two principal strains during stimulation was reduced. This technique allows to identify local areas of contraction and relaxation in the intact bladder wall in vivo. Three dimensional video registration of polystyrene fluorescent spheres to study bladder wall contraction and its relaxation proved to be a feasible technique, with which electrical stimulation effects and spontaneous activity could be measured.  相似文献   

10.
Although activity of the rectus femoris (RF) differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI) is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG) was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05). The onset of VI activation was 230–240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05). These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.  相似文献   

11.
Previous studies have suggested that neurons in the pedunculopontine nucleus (PPN) are activated during static muscle contraction. Furthermore, activation of the PPN, via electrical stimulation or chemical disinhibition, is associated with increases in respiratory activity observed via diaphragmatic electromyogram recordings. The present experiments address the potential for PPN involvement in the regulation of the reflex diaphragmatic responses to muscle contraction in chloralose-urethane anesthetized rats. Diaphragmatic responses to unilateral static hindlimb muscle contraction, evoked via electrical stimulation of the tibial nerve, were recorded before and subsequent to bilateral microinjections of a synaptic blockade agent (CoCl2) into the PPN. The peak reflex increases in respiratory frequency (9.0 +/- 1.0 breaths/min) and minute integrated diaphragmatic electromyogram activity (14.6 +/- 3.3 units/min) were attenuated after microinjection of CoCl2 into the PPN (2.6 +/- 0.9 breaths/min and 4.6 +/- 2.1 units/min, respectively). Consistent diaphragmatic responses were observed in the subset of animals that were barodenervated. Control experiments suggest no effects of PPN synaptic blockade on the cardiovascular responses to muscle contraction. The results are discussed in terms of a potential role for the PPN in modulation of the reflex respiratory adjustments that accompany muscular activity.  相似文献   

12.
Increase in bladder mucosal permeability can be reproduced by intravesical administration of protamine sulfate (PS); however, the influence of PS once administered into the bladder disappears within several days. We developed a chronic animal model of urothelial injury using PS. Insertion of a polyethylene catheter through the bladder dome was performed in female Wistar rats. The other end of the catheter was connected to an osmotic pump for continuous delivery of PS or vehicle for 2 wk. Urinary frequency (UF) and voided volume (VV) were measured in the metabolic cage. The fifth group of rats received a high dose of PS (10 mg/ml) for 2 wk and were followed for a further 2 wk without PS. The sixth group received a high dose of PS for 2 wk and loxoprofen (0.1 mg.kg(-1).day(-1)) for 4 wk. UF was increased, and VV was reduced in rats treated with a high dose of PS but not changed in rats treated with a vehicle or a low dose of PS (1 mg/ml). UF was further increased in the fifth group, while unchanged in the sixth group. Histological sections in rats treated with a high dose of PS demonstrated a loss of the upper layer of urothelial cells and an increased number of mast cells. PGE2 level in the bladder was significantly elevated in the fifth group. These results indicate that chronic urotherial injury leads to an increase in UF and a decrease in VV. Increased PGE2 level in the bladder is likely to be associated with long-lasting storage dysfunction.  相似文献   

13.
The purpose of this study was to examine the effectiveness of a commercial abdominal machine (Ab-Slide) and three common abdominal strengthening exercises (abdominal crunch, supine double leg thrust, and side bridge) on activating abdominal and minimizing extraneous (nonabdominal) musculature-namely, the rectus femoris muscle. We recruited 10 males and 12 females whose mean (+/- SD) percent body fat was 10.7 +/- 4 and 20.7% +/- 3.2%, respectively. Electromyographic (EMG) data were recorded using surface electrodes for the rectus abdominis, external oblique, internal oblique, and rectus femoris. We recorded peak EMG activity for each muscle during each of the four exercises and normalized the EMG values by maximum muscle contractions (% MVIC). A two-factor repeated-measures analysis of variance assessed differences in normalized EMG activity among the different exercise variations (p < 0.05). Post hoc analyses were performed using the Bonferroni-adjusted alpha to assess between-exercise pair comparisons (p < 0.002). Gender did not affect performance; hence, data were collapsed across gender. We found a muscle x exercise interaction (F9,189 = 5.2, p < 0.001). Post hoc analyses revealed six pairwise differences. The Ab-Slide elicited the greatest EMG activity for the abdominal muscles and the least for the rectus femoris. The supine double leg thrust could be a problem for patients with low-back pathology due to high rectus femoris muscle activity.  相似文献   

14.
With the aim of evaluating the excitability of the brain stem reflex centers, we studied the side-to-side differences in the EMG activity of the early and late components of the blink reflex, in subjects with unilateral dystonia without demonstrable brain lesions. We observed that both early and late responses of direct blink reflex were significantly higher in the affected side than in the contralateral one.  相似文献   

15.
The goal of the work was a study of exhaustive weightlifting exercise effect on prolonged changes in physiological and biochemical variables characterized functional status of skeletal muscles. An exercise gave rise to significant blood lactate concentration increase that was indicative of an anaerobic metabolism to be a predominant mechanism of muscle contraction energy supply. A reduction of m. rectus femoris EMG activity (amplitude and frequency), tonus of tension and an increase in tonus of relaxation were found immediately after exercise. Both EMG amplitude and frequency were increased 1 day post-exercise. However, after 3 days of recovery, EMG amplitude and frequency were decreased again and, in parallel, blood serum creatine kinase (CK) activity was significantly increased. After 9 recovery days, all measured variables with the exception of CK were normalized. A significant reverse correlation was found between blood serum lactate concentration and m. rectus femoris EMG activity at the same time points. Blood serum CK activity and m. rectus femoris EMG and tonus variables were observed to be significantly reversely correlated on the 3rd post-exercise day. Presented data demonstrate that exhaustive exercise-induced muscle injury resulted in phase alterations in electrical activity and tonus which correlated with lactate concentration and CK activity in blood serum.  相似文献   

16.
A. Dray  R. Metsch  T.P. Davis 《Peptides》1984,5(3):645-647
The involvement of endogenous opioid mechanisms in the central neurogenic control of urinary bladder function has been examined in anesthetized rats. Intracerebroventricular (ICV) microinjection of β-endorphin (0.5–2.0 μg) produced powerful inhibition of rhythmic bladder contractions initiated by central reflex activity. The peptide fragments γ-endorphin and α-endorphin (4–16 μg), formed by the processing of β-endorphin by membrane homogenates of brain, were less active than the parent compound. The inhibitory effects of β-endorphin was reversed by ICV naloxone (1–2 μg) but higher doses were required to reverse γ- or α-endorphin effects. ICV naloxone administered alone increased intravesicular pressure and bladder contraction frequency. These observations support the hypothesis that the endorphins have a physiological role in the central regulation of urinary bladder activity.  相似文献   

17.
The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the pathophysiology of chronic spinal injury-induced spasticity. In addition a consistent anti-spastic effect measured after treatment with clinically effective anti-spastic agents indicate that this model can effectively be used in screening new anti-spasticity compounds or procedures aimed at modulating chronic spinal trauma-associated muscle spasticity.  相似文献   

18.
Effects of the glucocorticoid hormone dexamethasone on the reflex discharges in the lumbar ventral roots and background activity (BA) of single neurons in the dorsal laminae of spinal grey were studied in rats after transection of the sciatic nerve. Administration of the hormone during early post-traumatic period (up to seven days) evoked no significant changes in the amplitude of increased (due to the postdenervation hyperreflexia) monosynaptic discharges on the side of nerve transection. At the same time, the monosynaptic discharges grew by 150–170% on the intact side. During later post-transection periods (up to 35 days), when ventral root reflex discharges were suppressed, dexamethasone facilitated reflex transmission via the polysynaptic segmental pathways on both the operated and intact sides. Nonetheless, the monosynaptic component of reflex discharges on the injured side did not recover. Dexamethasone treatment resulted in an increase in the number of BA-generating interneurons within the superficial dorsal horn laminae, and in a decrease in the proportion of units generating bursting activity (possibly of pathological nature).Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 26–31, January–February, 1995.  相似文献   

19.
The objective of this pilot study was to determine the effect of 6 different abdominal exercises on the electrical activity of the upper rectus abdominis (URA) and lower rectus abdominis (LRA). Eight healthy, adult volunteers completed 6 random abdominal exercises: curl up, Sissel ball curl up, Ab Trainer curl up, leg lowering, Sissel ball roll out, and reverse curl up. Action potentials were recorded and analyzed from the URA and the LRA using surface electromyography (EMG) during a 2-second concentric contraction. The average normalized data were compared between the URA and the LRA in order to determine the behavior of the different muscle sites and between exercises in order to determine which exercises elicited the highest EMG activity. There were no significant differences (p > 0.05) between the EMG activity of the URA and LRA during any exercise. There were no significant interactions between subject and muscle site or between exercise and muscle site. Significant differences were found among the 6 exercises performed, and due to the interaction between subject and exercise performed. Both the URA and the LRA recorded significantly higher mean amplitudes during the Sissel ball curl up than during all other exercises. In addition, the curl up, Sissel ball curl up, and Ab Trainer curl up had significantly higher normalized EMG activity in both muscle sites than the reverse curl up, the leg lowering exercise, and the Sissel ball roll out. The curl up and the Ab Trainer curl up exercises were not significantly different in terms of their normalized EMG activities for both the URA and the LRA.  相似文献   

20.
Electrical stimulation of femoral nerve modulates voluntary tonic activity o of ipsilateral soleus muscle. Stimulus time-locked inhibitory and facilitatory phases can be distinguished. EMG temporal analysis suggests that early perturbations are correlated with spinal effects of centripetal electrical activity. The inhibitory effects which momentarily abolish voluntary soleus activity are thought to result from quadriceps Ib fibres recruitment. While no heteronymous activity is induced at rest, femoral nerve Ia fibres activation can produce soleus muscle reflex when soleus motor nucleus excitability is increased by voluntary command. Recurrent discharge resulting from soleus reflex response enhances inhibition initially due to quadriceps Ib volley. Secondary effects of isometric quadriceps contraction (and soleus contraction when the femoral stimulus elicits a reflex in this muscle) have their own effects later. These findings suggest that proprioceptive relationships of the two muscular groups are efficient during tonic isometric voluntary command.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号