首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was aimed to evaluate the preventive effects of (–) epicatechin on alterations in the activities/levels of adenosine triphosphatases and minerals in isoproterenol‐induced myocardial infarcted rats. Male albino Wistar rats were pretreated with (–) epicatechin (20 mg/kg body weight) daily for a period of 21 days. After the pretreatment period, rats were induced myocardial infarction by isoproterenol (100 mg/kg body weight) on 22nd and 23rd day. The activity of sodium/potassium‐dependent adenosine triphosphatase was decreased, and the activities of calcium‐ and magnesium‐dependent adenosine triphosphatases were increased in the heart of isoproterenol‐induced myocardial infarcted rats. In addition, the concentrations of potassium were decreased and the concentrations of sodium and calcium were increased in the heart of isoproterenol‐induced rats. Elevated plasma lipid peroxidation was noted in isoproterenol‐induced rats. Prior treatment with (–) epicatechin significantly prevented the alterations in the activities and concentrations of adenosine triphosphatases, minerals, and plasma lipid peroxidation. The in vitro study confirmed the reducing property of (–) epicatechin. The observed effects in this study are attributed to the membrane‐stabilizing and antioxidant properties of (–) epicatechin. The findings of this study will be beneficial to prevent the occurrence of myocardial infarction. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:516‐521, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21461  相似文献   

2.
Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat’s heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients.  相似文献   

3.
This study was designed to evaluate the anti-inflammatory and anti-apoptotic effects of the alcoholic extract of the berries of Crataegus oxyacantha (AEC), a medicinal herb, on isoproterenol-induced myocardial infarction (MI) in a rat model. Three groups of Wistar albino rats, each comprising six animals, were selected for this study. Group I rats served as control. Group II rats were given isoproterenol (85 mg/kg body weight) subcutaneously on 59th and 60th days. Group III rats were given AEC (0.5 ml/100 g body weight/day), orally on a daily basis for 60 days, and isoproterenol (85 mg/kg body weight, subcutaneously) was given on 59th and 60th days. On the 61st day, the animals were sacrificed, and marker enzymes like lactate dehydrogenase (LDH) and creatine kinase (CK) were estimated in serum. In the heart tissue sample, antioxidant status, lipid peroxidation and anti-inflammatory properties of AEC were determined. Isoproterenol significantly increased the release of LDH, CK in serum, decreased the antioxidant status in the heart along with an increase in lipid peroxidation. Nitritive stress and apoptosis were seen in isoproterenol-induced rat heart. Pre-treatment with the AEC for 60 days had a significant effect on all the above factors and maintained near normal status. The study confirms the protective effect of AEC against isoproterenol-induced inflammation and apoptosis-associated MI in rats.  相似文献   

4.
Increased oxidative stress and antioxidant deficit have been suggested to play a major role in isoproterenol-induced myocardial infarction. The present study was designed to evaluate the effect of alpha-mangostin on the antioxidant defense system and lipid peroxidation against isoproterenol-induced myocardial infarction in rats. Induction of rats with ISO (150 mg/kg body weight, ip) for 2 days resulted in a marked elevation in lipid peroxidation, serum marker enzymes (LDH, CPK, GOT, and GPT) and a significant decrease in the activities of endogenous antioxidants (SOD, CAT, GPx, GST, and GSH). Pre-treatment with alpha-mangostin (200 mg/kg of body weight per day) orally for 6 days prior to the ISO administration and 2 days along with ISO administration significantly attenuated these changes when compared to the individual treatment groups. These findings indicate the protective effect of alpha-mangostin on lipid peroxidation and antioxidant tissue defense system during ISO-induced myocardial infarction in rats.  相似文献   

5.
Mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. We evaluated the combined protective effects of quercetin and α-tocopherol on mitochondrial damage and myocardial infarct size in isoproterenol-induced myocardia- infarcted rats. Rats were pretreated with quercetin (10 mg/kg) alone, α-tocopherol (10 mg/kg) alone, and combination of quercetin (10 mg/kg) and α-tocopherol (10 mg/kg) orally using an intragastric tube daily for 14 days. After pretreatment, rats were induced myocardial infarction by isoproterenol (100 mg/kg) at an interval of 24 h for 2 days. Isoproterenol treatment caused significant increase in mitochondrial lipid peroxides with significant decrease in mitochondrial antioxidants. Significant decrease in the activities of isocitrate, succinate, malate, and α-ketoglutarate and NADH dehydrogenases and cytochrome-c-oxidase, significant increase in calcium, and significant decrease in adenosine triphosphate were observed in mitochondria of myocardial infarcted rats. Combined pretreatment with quercetin and α-tocopherol normalized all the biochemical parameters and preserved the integrity of heart tissue and restored normal mitochondrial function in myocardial-infarcted rats. Transmission electron microscopic findings on heart mitochondria and macroscopic enzyme mapping assay on the size of myocardial infarct also correlated with these biochemical parameters. The present study showed that combined pretreatment was highly effective than single pretreatment.  相似文献   

6.
This study was aimed to evaluate the preventive effect of diosgenin and exercise on tissue antioxidant status in isoproterenol-induced myocardial infarction (MI) in male Wistar rats. Levels of lipid peroxides, reduced glutathione (GSH), and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidise and glutathione reductase) and antiperoxidative enzymes (catalase and superoxide dismutase) in the plasma and the heart tissue of experimental groups of rats were determined. Pretreatment with diosgenin and exercise exerted an antioxidant effect against isoproterenol-induced myocardial infarction by blocking the induction of lipid peroxidation. A tendency to prevent the isoproterenol-induced alterations in the level of GSH, in the activities of glutathione-dependent antioxidant enzymes and antiperoxidative enzymes was also observed. Histopathological findings of the myocardial tissue showed a protective role for combination of diosgenin and exercise in isoproterenol (ISO)-treated rats. Thus, the present study reveals that preconditioning with diosgenin and exercise exerts cardioprotective effect against ISO-induced MI due to its free radical scavenging and antioxidant effects, which maintains the tissue defense system against myocardial damage.  相似文献   

7.
AimsMembrane bound adenosine triphosphatases (ATPases) and lysosomal enzymes play an important role in the pathology of myocardial infarction. This study was aimed to evaluate the combined preventive effects of quercetin and α-tocopherol on membrane bound ATPases and lysosomal enzymes in isoproterenol induced myocardial infarcted rats.Main methodsMale Wistar rats were pretreated with a combination of quercetin (10 mg/kg) and α-tocopherol (10 mg/kg) daily for 14 days. After the pretreatment period, isoproterenol (100 mg/kg) was injected to rats at an interval of 24 h for two days to induce myocardial infarction. The activities of ATPases and lysosomal enzymes were assayed.Key findingsIsoproterenol treated rats showed decreased levels of heart creatine kinase and lactate dehydrogenase. The activity of sodium potassium adenosine triphosphatase was decreased and the activities of magnesium adenosine triphosphatase and calcium adenosine triphosphatase were increased in isoproterenol treated rats. Also, the activities of β-glucuronidase, β-N-acetylglucosaminidase, β-galactosidase, cathepsin-B and D were increased (serum and heart), but the activities of β-glucuronidase and cathepsin-D were decreased in lysosomal fraction and increased in cytosolic fraction of the heart in isoproterenol treated rats. Furthermore, the heart lipid peroxidation products were increased in isoproterenol treated rats. Combined pretreatment with quercetin and α-tocopherol to isoproterenol treated rats normalized all the biochemical parameters studied. The observed effects are due to their membrane stabilizing property and this property might be due to decreased lipid peroxidation.SignificanceOur study demonstrated that combined pretreatment was better than single pretreatment. This study may have significant impact on myocardial infarcted patients.  相似文献   

8.
9.
This study evaluates the protective effects of thymol on altered plasma lipid peroxidation products and nonenzymic antioxidants in isoproterenol (ISO)‐induced myocardial infarcted rats. Male albino Wistar rats were pre and cotreated with thymol (7.5 mg/kg body weight) daily for 7 days. ISO (100 mg/kg body weight) was subcutaneously injected into rats on 6th and 7th day to induce myocardial infarction (MI). Increased activity/levels of serum creatine kinase‐MB (CK‐MB), plasma thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes with decreased levels of plasma reduced glutathione (GSH), vitamin C, and vitamin E were observed in ISO‐induced myocardial infarcted rats. Pre and cotreatment with thymol (7.5 mg/kg body weight) showed normalized activity of serum CK‐MB and near normalized levels of plasma lipid peroxidation products, reduced GSH, vitamin C, and vitamin E in myocardial infarcted rats. Furthermore, the in vitro study on reducing power of thymol confirmed its potent antioxidant action. Thus, thymol protects ISO‐induced MI in rats by its antilipid peroxidation and antioxidant properties. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:368–373, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21431  相似文献   

10.
In recent years, polyphenols have attracted considerable attention as agents that protect cells or molecules from oxidative myocardial injury. The aim of the study was to prove the cardioprotective benefits of the flavonoid morin in isoproterenol-induced myocardial infarcted rats. Male Wistar rats are treated orally with morin (10 and 20 mg/kg) daily for a period of 21 days. After 21 days of pretreatment, isoproterenol (100 mg/kg) was injected subcutaneously to rats at an interval of 24 h for 2 days to induce myocardial infarction. Electrocardiographical abnormalities and biomarkers were measured in normal and experimental rats. Isoproterenol-induced myocardial infarcted rats showed significant (p<0.05) increase in the levels of cardiac markers. Pretreatment with morin regulated the abnormalities in electrocardiograph and biomarkers. The lipid peroxidation products were increased and indicated the increased lipid peroxidation in isoproterenol-induced myocardial infarcted rats. The rats pretreated with morin significantly reduced lipid peroxidation. The altered lipid metabolism was observed in isoproterenol-induced myocardial infarcted rats and in pretreatment with morin-regulated lipid metabolism. Histopathological study evidenced that the pretreatment with morin inhibited myocardial damage. The results of this study proved the protective effect of morin as pretreatment and are rational to understand the beneficial effects of morin on cardioprotection against myocardial injury. Based on the results, the cardioprotective ability of morin on human beings can be studied in the future.  相似文献   

11.
The present study evaluated the protective effect of fish oil in isoproterenol-induced myocardial infarction in rats. The results of the present study indicate that the IPH administration decreases the activities of membrane-bound ATPases compared to control animals. Fish oil pretreatment brought about significant increase in the activity of these membrane-bound ATPases in IPH (isoproterenol hydrochloride)-treated animals. Significant increase in serum potassium level with concomitant decrease in the values of sodium, magnesium, and calcium were observed in IPH-treated rats compared to control rats, fish oil pretreatment reversed these changes to near normal. Significant elevation of sodium and calcium levels with concomitant decrease in the levels of potassium and magnesium were observed in the myocardial tissue of IPH-administered rats compared to control rats, fish oil pretreatment followed by IPH administration brought these levels to near normal. The levels of lipid peroxidation (LPO) in both serum and tissue were increased in IPH-treated rats compared with control rats, whereas pretreatment with fish oil in IPH-treated rats maintained near-normal LPO levels. The results of the present study reveals that the pretreatment of fish maintains the activities of membrane-bound ATPases and the mineral levels at near normal by the inhibition of lipid peroxidation  相似文献   

12.
This study evaluates the protective effects of 7‐hydroxycoumarin (7‐HC) on dyslipidemia and cardiac hypertrophy in isoproterenol (ISO) induced myocardial infarction (MI) in rats. Rats were pre‐ and co treated with 7‐HC (16 mg/kg) daily for 8 days. ISO (100 mg/kg) was subcutaneously injected into rats on seventh and eighth days to induce MI. Increased activity/levels of serum creatine kinase‐MB (CK‐MB), troponin‐T, plasma lipid peroxidation products, and altered levels of lipids in the serum and heart and serum lipoproteins were noted in ISO‐induced rats. ISO‐induced myocardial infarcted rats revealed increased hypertrophy (cardiac and left ventricular) and hepatic 3‐hydroxyl 3‐methylglutaryl‐coenzyme‐A reductase (HMG‐CoA reductase) activity. Pre and cotreatment with 7‐HC revealed significant protective effects on all the biochemical parameters evaluated. The in vitro study demonstrated its free radical scavenging property. Thus, 7‐HC protects ISO‐induced MI in rats by its free radical scavenging and antihyperlipidaemic and antihypertrophic properties.  相似文献   

13.
Cardiovascular diseases are emerging as a major public health problem in most parts of the world even in developing countries still afflicted by infectious diseases, undernutrition, and other illnesses related to poverty. In the present study, we investigated the protective effect of betaine, a potent lipotropic molecule, on changes in the levels of membrane-bound ATPase activities, lipid peroxidation, sulfhydryl activities, and mineral status in isoprenaline-induced myocardial infarction in Wistar rats, an animal model of myocardial infarction in man. Oral administration of betaine (250 mg/kg body weight/day for a period of 30 days) significantly (p < 0.05) reduced the isoprenaline-induced abnormalities noted in the levels of sodium, potassium, and calcium in plasma and heart tissue. Pretreatment with betaine significantly attenuated isoprenaline-induced membrane-bound ATPase depletion in the heart tissue and preserved the myocardial membrane-bound ATPase activities at levels comparable to that of control rats. Oral administration of betaine significantly attenuated the isoprenaline-altered sulfhydryl groups in the heart tissue and preserved the myocardial sulfhydryl activities at levels comparable to that of control rats. It also significantly counteracted the isoprenaline-mediated lipid peroxidation and maintained the level at near normal. In the results of the present study, betaine administration significantly prevented the isoprenaline-induced alterations in the activities of membrane-bound ATPases, lipid peroxides, myocardial sulfhydryl levels, and maintained the mineral status at near normal.  相似文献   

14.

Mitochondrial dysfunction plays crucial role in the pathologenesis of myocardial infarction (MI). The present study evaluated the protective effect of α-bisabolol against isoproterenol (ISO)-induced mitochondrial dysfunction and apoptosis in rats. Male albino Wistar rats were pre- and co-treated with intraperitoneal injection of α-bisabolol (25 mg/kg body weight) daily for 10 days. To induce experimental MI, ISO (85 mg/kg body weight) was injected subcutaneously to the rats at an interval of 24 h for 2 days (9th and 10th day). ISO-induced MI was indicated by the decreased activities of heart creatine kinase and lactate dehydrogenase in rats. ISO administration also enhanced the concentrations of heart mitochondrial lipid peroxidation products and decreased the activities/concentrations of mitochondrial antioxidants, Kreb’s cycle dehydrogenases and mitochondrial electron transport chain complexes I, II?+?III and IV in rats. Furthermore, ISO triggers calcium overload and ATP depletion in the rat’s heart mitochondria followed by the mitochondrial cytochrome-C release and the activation of intrinsic pathway of apoptosis by upregulating the myocardial pro-apoptotic Bax, P53, APAF-1, active caspase-3, active caspase-9 and down regulating the expressions of anti-apoptotic Bcl-2. α-Bisabolol pre and co-treatment showed considerable protective effects on all the biochemical and molecular parameters studied. Transmission electron microscopic study and mitochondrial swelling assay confirmed our biochemical and molecular findings. The in vitro study on hydroxyl radical also revealed the potent free radical scavenging activity of α-bisabolol. Thus, α-bisabolol attenuates mitochondrial dysfunction and intrinsic pathway of apoptosis in ISO-induced myocardial infarcted rats.

  相似文献   

15.
Lead (Pb) is known to disrupt the pro-oxidant/antioxidant balance of tissues, which leads to biochemical and physiological dysfunction. Oxidative stress is considered a possible molecular mechanism involved in Pb neurotoxicity. Considering the vulnerability of the brain to oxidative stress under Pb neurotoxicity, this study investigated the effects of exposure of the thiol antioxidant N-acetylcysteine (NAC) on lead-induced oxidative damage and lipid peroxidation in brain regions of the rat. Wister strain rats were exposed to lead in the form of lead acetate (20 mg/kg body wt/d) for a period of 2 wk and the effects of NAC on lead-induced neurotoxicity in rat brain regions were assessed by postadministration of NAC (160 mg/kg body wt/d) for a period of 3 wk. The lipid peroxidation byproduct, malondialdehyde (MDA) increased following lead exposure in both of the regions, and the antioxidant capacities of the cell in terms of the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) was diminished. Following NAC treatment, lead-induced lipid peroxidation decreased and antioxidant enzyme activities improved, with CAT showing enhancement in the cerebral region only and SOD showing enhancements in the cerebellar region. Our result suggests that thiol-antioxidant supplementation following Pb exposure might enhance the reductive status of brain regions by arresting the lipid peroxidative damage in brain regions.  相似文献   

16.
In the present study, the protective effect of curcumin against sodium fluoride-induced nephrotoxicity was evaluated in rats. Renal injury was induced by daily administration of 600 ppm sodium fluoride in drinking water for 1 week. One week before the administration of fluoride, the animals selected as study group were given curcumin (10 and 20 mg/kg body weight, intraperitoneally). After 1 week, lipid peroxidation level, activities of superoxide dismutase, catalase, and level of glutathione in kidney homogenate were measured. Blood serum samples were examined for creatinine, serum urea, and blood urea nitrogen levels. Another group of rats received vitamin C (10 mg/kg) as standard antioxidant. The results show that curcumin and vitamin C treatment prior to fluoride administration normalized the levels of serum creatinine, serum urea, and blood urea nitrogen. Moreover, curcumin and vitamin C administrations prevented the antioxidant enzyme decreasing and lipid peroxidation levels imbalance. In conclusion, curcumin treatment at the doses of 10 and 20 mg/kg (intraperitoneally) showed significant nephroprotective effects.  相似文献   

17.
Studies on the lipid peroxidation and antioxidant changes and their significance during myocardial injury have provided a new insight into the pathogenesis of heart disease. The heart failure subsequent to myocardial infarction may be associated with an antioxidant deficit as well as increased myocardial oxidative stress. The present study was designed to evaluate the effect of the combination of ferulic acid and ascorbic acid on antioxidant defense system and lipid peroxidation against isoproterenol (ISO)-induced myocardial infarction in rats. Induction of rats with isoproterenol (150 mg/kg body weight daily, i.p.) for 2 days resulted in a marked elevation in lipid peroxidation, serum marker enzymes (LDH, CPK, GOT, and GPT), and a significant decrease in activities of endogenous antioxidants (SOD, GPx, GST, CAT, and GSH). Pre-co-treatment with the combination of ferulic acid (20 mg/kg body weight/day) and ascorbic acid (80 mg/kg body weight/day) orally for 6 days, significantly attenuated these changes when compared to the individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. Thus, ferulic acid and ascorbic acid significantly counteracted the pronounced oxidative stress effect of ISO by the inhibition of lipid peroxidation, restoration of antioxidant status, and myocardial marker enzymes levels. In conclusion, these findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on lipid peroxidation and antioxidant defense system during ISO-induced myocardial infarction and associated oxidative stress in rats.  相似文献   

18.
In recent years, N-acetyl-L-cysteine (NAC) has been widely investigated as a potentially useful protective and antioxidative agent to be applied in many pathological states. The aim of the present work was further evaluation of the mechanisms of the NAC protective effect under carbon tetrachloride-induced acute liver injuries in rats. The rat treatment with CCl4 (4 g/kg, intragastrically) caused pronounced hepatolysis observed as an increase in blood plasma bilirubin levels and hepatic enzyme activities, which agreed with numerous previous observations. The rat intoxication was accompanied by an enhancement of membrane lipid peroxidation (1.4-fold) and protein oxidative damage (protein carbonyl group and mixed protein-glutathione disulphide formations) in the rat liver. The levels of nitric oxide in blood plasma and liver tissue significantly increased (5.3- and 1.5-fold, respectively) as blood plasma triacylglycerols decreased (1.6-fold). The NAC administration to control and intoxicated animals (three times at doses of 150 mg/kg) elevated low-molecular-weight thiols in the liver. The NAC administration under CCl4-induced intoxication prevented oxidative damage of liver cells, decreased membrane lipid peroxidation, protein carbonyls and mixed protein-glutathione disulphides formation, and partially normalized plasma triacylglycerols. At the same time the NAC treatment of intoxicated animals did not produce a marked decrease of the elevated levels of blood plasma ALT and AST activities and bilirubin. The in vitro exposure of human red blood cells to NAC increased the cellular low-molecular-weight thiol levels and retarded tert-butylhydroperoxide-induced cellular thiol depletion and membrane lipid peroxidation as well as effectively inhibited hypochlorous acid-induced erythrocyte lysis. Thus, NAC can replenish non-protein cellular thiols and protect membrane lipids and proteins due to its direct radical-scavenging properties, but it did not attenuate hepatotoxicity in the acute rat CCl4-intoxication model.  相似文献   

19.
The present work investigates the protective effects of N-acetylcysteine (NAC) on carbofuran-induced alterations in lipid composition and activity of membrane bound enzymes (Na+-K+-ATPase and Ca2+-ATPase) in the rat brain. Animals were exposed to carbofuran at a dose of 1 mg/kg body weight, orally, for a period of 28 days. A significant increase in lipid peroxidation in terms of TBARS was observed in brain after carbofuran exposure. NAC administration (200 mg/kg body weight) on the other hand lowered the carbofuran-induced lipid peroxidation to near normal. The increased lipid peroxidation following carbofuran exposure was accompanied by a significant decrease in the levels of total lipids, which is attributed to the reduction in phospholipid levels. Furthermore, NAC administration had a beneficial effect on carbofuran-induced alterations in lipid composition. The ratio of cholesterol to phospholipid, a major determinant of membrane fluidity, was increased in response to carbofuran exposure. This was associated with decreased activity of Na+-K+-ATPase and Ca2+-ATPase. NAC was observed to offer protection by restoring the cholesterol to phospholipid ratio along with the activity of Na+-K+-ATPase and Ca2+-ATPase. The results clearly suggest that carbofuran exerts its neurotoxic effects by increasing lipid peroxidation, altering lipid composition and activity of membrane bound enzymes. NAC administration ameliorated the effects of carbofuran suggesting its potential therapeutic effects in carbofuran neurotoxicity.  相似文献   

20.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号