首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Guo  H Wang  Y Li  Y Song  C Chen  Y Liao  L Ren  C Guo  W Tong  W Shen  M Chen  X Mao  G Guo  Q Zou 《Journal of bacteriology》2012,194(15):4146-4147
The infection rate of Helicobacter pylori is high all over the world, especially in the Chinese Tibetan Plateau. Here, we report the genome sequence of Helicobacter pylori strain XZ274 isolated from a Tibetan patient with gastric cancer. The strain contains 1,634,138 bp with 1,654 coding sequences and a pXZ274 plasmid of 22,406 bp with 26 coding sequences. This is the first complete genome sequence of Helicobacter pylori from the Tibetan Plateau in China.  相似文献   

2.
A temperate bacteriophage (F108) has been isolated through mitomycin C induction of a Pasteurella multocida serogroup A strain. F108 has a typical morphology of the family Myoviridae, presenting a hexagonal head and a long contractile tail. F108 is able to infect all P. multocida serogroup A strains tested but not those belonging to other serotypes. Bacteriophage F108, the first P. multocida phage sequenced so far, presents a 30,505-bp double-stranded DNA genome with cohesive ends (CTTCCTCCCC cos site). The F108 genome shows the highest homology with those of Haemophilus influenzae HP1 and HP2 phages. Furthermore, an F108 prophage attachment site in the P. multocida chromosome has been established to be inside a gene encoding tRNA(Leu). By using several chromosomal markers that are spread along the P. multocida chromosome, it has been demonstrated that F108 is able to perform generalized transduction. This fact, together with the absence of pathogenic genes in the F108 genome, makes this bacteriophage a valuable tool for P. multocida genetic manipulation.  相似文献   

3.
A clone of bacteriophage P1 clr100 cml has been isolated capable of the general transduction in the cells of pseudotuberculosis causative agent. The genetic transfer of the 6 Md pesticinogenicity plasmid by the bacteriophage has been used as a model to demonstrate the possibility of transduction. The bacteriophage used has been shown to be efficient in interspecies transduction between yersinia.  相似文献   

4.
Abstract Genomic DNA from 15 strains of Helicobacter mustelae was subjected to pulsed-field gel electrophoresis (PFGE) after digestion with Pac I and S fi I. H. mustelae genome DNA appeared very similar in all strains examined, whether isolated from ferrets or mink or from animals bred in either the USA or in the UK. The H. mustelae genome size was estimated to be 1.7 Mb, similar in size to that of H. pylori . A minor difference in PacI PFGE pattern and genome size was observed between rifampicin-resistant and rifampicin-susceptible derivatives of H. mustelae F251. Another minor difference in genome pattern based on PFGE with S fi I was observed between an H. mustelae strain used to experimentally infect four ferrets which resulted in loss of an S fi I site in strains obtained from the newly infected ferrets. Thus, although minor differences in PFGE pattern were noted, H. mustelae lacks the genomic diversity observed in H. pylori .  相似文献   

5.
A temperate bacteriophage (F108) has been isolated through mitomycin C induction of a Pasteurella multocida serogroup A strain. F108 has a typical morphology of the family Myoviridae, presenting a hexagonal head and a long contractile tail. F108 is able to infect all P. multocida serogroup A strains tested but not those belonging to other serotypes. Bacteriophage F108, the first P. multocida phage sequenced so far, presents a 30,505-bp double-stranded DNA genome with cohesive ends (CTTCCTCCCC cos site). The F108 genome shows the highest homology with those of Haemophilus influenzae HP1 and HP2 phages. Furthermore, an F108 prophage attachment site in the P. multocida chromosome has been established to be inside a gene encoding tRNALeu. By using several chromosomal markers that are spread along the P. multocida chromosome, it has been demonstrated that F108 is able to perform generalized transduction. This fact, together with the absence of pathogenic genes in the F108 genome, makes this bacteriophage a valuable tool for P. multocida genetic manipulation.  相似文献   

6.
Constitutive expression of gamma-glutamyltranspeptidase (GGT) activity is common to all Helicobacter pylori strains, and is used as a marker for identifying H. pylori isolates. Helicobacter pylori GGT was purified from sonicated extracts of H. pylori strain 85P by anion exchange chromatography. The N-terminal amino acid sequences of two of the generated endo-proteolysed peptides were determined, allowing the cloning and sequencing of the corresponding gene from a genomic H. pylori library. The H. pylori ggt gene consists of a 1681 basepair (bp) open reading frame encoding a protein with a signal sequence and a calculated molecular mass of 61 kDa. Escherichia coli clones harbouring the H. pylori ggt gene exhibited GGT activity at 37 degrees C, in contrast to E. coli host cells (MC1061, HB101), which were GGT negative at 37 degrees C. GGT activity was found to be constitutively expressed by similar genes in Helicobacter felis, Helicobacter canis, Helicobacter bilis, Helicobacter hepaticus and Helicobacter mustelae. Western immunoblots using rabbit antibodies raised against a His-tagged-GGT recombinant protein demonstrated that H. pylori GGT is synthesized in both H. pylori and E. coli as a pro-GGT that is processed into a large and a small subunit. Deletion of a 700 bp fragment within the GGT-encoding gene of a mouse-adapted H. pylori strain (SS1) resulted in mutants that were GGT negative yet grew normally in vitro. These mutants, however, were unable to colonize the gastric mucosa of mice when orally administered alone or together (co-infection) with the parental strain. These results demonstrate that H. pylori GGT activity has an essential role for the establishment of the infection in the mouse model, demonstrating for the first time a physiological role for a bacterial GGT enzyme.  相似文献   

7.
Although molecular techniques have identified Helicobacter pylori in drinking water-associated biofilms, there is a lack of studies reporting what factors affect the attachment of the bacterium to plumbing materials. Therefore, the adhesion of H. pylori suspended in distilled water to stainless steel 304 (SS304) coupons placed on tissue culture plates subjected to different environmental conditions was monitored. The extent of adhesion was evaluated for different water exposure times, using epifluorescence microscopy to count total cell numbers. High shear stresses-estimated through computational fluid dynamics-negatively influenced the adhesion of H. pylori to the substrata (P < 0.001), a result that was confirmed in similar experiments with polypropylene (P < 0.05). However, the temperature and inoculation concentration appeared to have no effect on adhesion (P > 0.05). After 2 hours, H. pylori cells appeared to be isolated on the surface of SS304 and were able to form small aggregates with longer exposure times. However, the formation of a three-dimensional structure was only very rarely observed. This study suggests that the detection of the pathogen in well water described by other authors can be related to the increased ability of H. pylori to integrate into biofilms under conditions of low shear stress. It will also allow a more rational selection of locations to perform molecular or plate culture analysis for the detection of H. pylori in drinking water-associated biofilms.  相似文献   

8.
Helicobacter pylori is naturally competent for transformation, but the DNA uptake system of this bacterium is only partially characterized, and nothing is known about the regulation of competence in H. pylori. To identify other components involved in transformation or competence regulation in this species, we screened a mutant library for competence-deficient mutants. This resulted in the identification of a novel, Helicobacter-specific competence gene (comH) whose function is essential for transformation of H. pylori with chromosomal DNA fragments as well as with plasmids. Complementation of comH mutants in trans completely restored competence. Unlike other transformation genes of H. pylori, comH does not belong to a known family of orthologous genes. Moreover, no significant homologs of comH were identified in currently available databases of bacterial genome sequences. The comH gene codes for a protein with an N-terminal leader sequence and is present in both highly competent and less-efficient transforming H. pylori strains. A comH homolog was found in Helicobacter acinonychis but not in Helicobacter felis and Helicobacter mustelae.  相似文献   

9.
10.
We have isolated a novel restriction endonuclease, Hpy188I, from Helicobacter pylori strain J188. Hpy188I recognizes the unique sequence, TCNGA, and cleaves the DNA between nucleotides N and G in its recognition sequence to generate a one-base 3' overhang. Cloning and sequence analysis of the Hpy188I modification gene in strain J188 reveal that hpy188IM has a 1299-base pair (bp) open reading frame (ORF) encoding a 432-amino acid product. The predicted protein sequence of M.Hpy188I contains conserved motifs typical of aminomethyltransferases, and Western blotting indicates that it is an N-6 adenine methyltransferase. Downstream of hpy188IM is a 513-bp ORF encoding a 170-amino acid product, that has a 41-bp overlap with hpy188IM. The predicted protein sequence from this ORF matches the amino acid sequence obtained from purified Hpy188I, indicating that it encodes the endonuclease. The Hpy188I R-M genes are not present in either strain of H. pylori that has been completely sequenced but are found in two of 11 H. pylori strains tested. The significantly lower G + C content of the Hpy188I R-M genes implies that they have been introduced relatively recently during the evolution of the H. pylori genome.  相似文献   

11.
The diverse clinical outcomes of colonization by Helicobacter pylori reflect the need to understand the genomic rearrangements enabling the bacterium to adapt to host niches and exhibit varied colonization/virulence potential. We describe the genome sequences of the two serial isolates, H. pylori 2017 and 2018 (the chronological subclones of H. pylori 908), cultured in 2003 from the antrum and corpus, respectively, of an African patient who suffered from recrudescent duodenal ulcer disease. When compared with the genome of the parent strain, 908 (isolated from the antrum of the same patient in 1994), the genome sequences revealed genomic alterations relevant to virulence optimization or host-specific adaptation.  相似文献   

12.
Helicobacter pylori is a genetically diverse and coevolved pathogen inhabiting human gastric niches and leading to a spectrum of gastric diseases in susceptible populations. We describe the genome sequence of H. pylori 908, which was originally isolated from an African patient living in France who suffered with recrudescent duodenal ulcer disease. The strain was found to be phylogenetically related to H. pylori J99, and its comparative analysis revealed several specific genome features and novel insertion-deletion and substitution events. The genome sequence revealed several strain-specific deletions and/or gain of genes exclusively present in HP908 compared with different sequenced genomes already available in the public domain. Comparative and functional genomics of HP908 and its subclones will be important in understanding genomic plasticity and the capacity to colonize and persist in a changing host environment.  相似文献   

13.
Multidrug-resistant Pseudomonas aeruginosa commonly causes serious nosocomial infections. In this study, a novel lytic bacteriophage belonging to a member of the family Podoviridae, YMC01/01/P52 PAE BP, which infects carbapenem-resistant Pseudomonas aeruginosa, was isolated and characterized. YMC01/01/P52 PAE BP genome was analyzed by whole-genome sequencing and putative function identification. The bacteriophage genome consists of a double-stranded linear DNA genome of 49,381 bp with a GC content of 62.16%.  相似文献   

14.
Despite extensive annotation by two independent teams, the Helicobacter pylori genome appeared to lack a complete secretion machinery. The use of clinical isolates to substantiate in silico annotation is used here to identify the missing secE component of the major secretion machinery of Helicobacter pylori.  相似文献   

15.
DNA macroarrays were used to characterize 17 Helicobacter pylori strains isolated in four geographic regions of Russia (Moscow, St. Petersburg, Kazan, and Novosibirsk). Of all genes, 1272 (81%) proved to occur in all strains and to constitute a functional core of the genome, and 293 (18.7%) were strain-specific and greatly varied among the H. pylori strains. Most (71%) of the latter had unknown functions; the remainder included restriction-modification genes (3-9%), transposition genes (2-4%), and genes coding for outer membrane proteins (2-4%). The Russian H. pylori strains did not differ in genome organization or in the number and distribution of strain-specific genes from strains isolated in other countries.  相似文献   

16.
Bacteriophage FP22 has a very broad host range within streptomycetes and appeared to form lysogens of Streptomyces ambofaciens ATCC 15154. FP22 shared strong cross-immunity and antibody cross-reactivity with bacteriophage P23, but not with seven other streptomycete bacteriophages. FP22 particles had a head diameter of 71 nm and a tail length of 307 nm. The FP22 genome was 131 kb, which is the largest bacteriophage genome reported for streptomycetes. The G + C content of the genome was 46 mol% and restriction mapping indicated that FP22 DNA had discrete ends. NaCl- and pyrophosphate-resistant deletion mutants were readily isolated and the extent of the deletions defined at least 23 kb of dispensable DNA in two regions of the genome. The DNA was not cleaved by most restriction endonucleases (or isoschizomers) which have been identified in the streptomycetes, including the tetranucleotide cutter MboI (GATC).  相似文献   

17.
Transduction in Bacillus subtilis by Bacteriophage SPP1   总被引:15,自引:4,他引:11       下载免费PDF全文
Lysates of the virulent bacteriophage SPP1 were shown to be capable of mediating generalized transduction. Suppressible mutants of this bacteriophage (sus) were capable of transduction at a lower multiplicity of infection than virulent SPP1. Linkage analysis demonstrated that bacteriophage SPP1 transduced segments of the genome equal in size to that transferred by SP10. This bacteriophage should be useful in analyzing the regions of the genome where PBS1 appears to give anomalous results.  相似文献   

18.
A temperate, type IV pilus-dependent, double-stranded DNA bacteriophage named DMS3 was isolated from a clinical strain of Pseudomonas aeruginosa. A clear-plaque variant of this bacteriophage was isolated. DMS3 is capable of mediating generalized transduction within and between P. aeruginosa strains PA14 and PAO1, thus providing a useful tool for the genetic analysis of P. aeruginosa.  相似文献   

19.
The increasing availability of DNA-sequence information for multiple pathogenic and non-pathogenic variants of individual bacterial species has indicated that both DNA acquisition and genome reduction have important roles in genome evolution. Such genomic fluidity, which is found in human pathogens such as Escherichia coli, Helicobacter pylori and Mycobacterium tuberculosis, has important consequences for the clinical management of the diseases that are caused by these pathogens and for the development of diagnostics and new molecular epidemiological methods.  相似文献   

20.
Antagonistic activity of Lactobacillus strains has been known for some time. This property is connected with production of many active substances by lactobacilli e.g., organic acids and bacteriocin-like substances which interfere with other indigenous microorganisms inhabiting the same ecological niche, including also anaerobic gastrointestinal tract pathogens. Growing interest of clinical medicine in finding new approaches to treatment and prevention of common inflammatory infections of the digestive tract resulted in studies on a possible usage of lactic acid bacteria. Last years, several in vitro and in vivo experiments on antagonism of different Lactobacillus strains against Helicobacter pylori and Clostridium difficile were performed. These observations had been done on already established, well known probiotic Lactobacillus strains. We tested antibacterial activities of Lactobacillus strains isolated from human digestive tract. As indicator bacteria, four species known as anaerobic bacterial etiologic agents of gastroenteric infections: Helicobacter pylori, Campylobacter jejuni, C. coli and Clostridium difficile were used. Some of them were obtained from international collections, others were clinical isolates from specimens taken from patients with different defined gastrointestinal infections. We used a slab method of testing inhibitory activity described in details previously. Following conclusions were drawn from our study: All tested human Lactobacillus strains were able to inhibit the growth of all strains of anaerobic human gastrointestinal pathogens used in this study. Inhibitory activities of tested Lactobacillus strains against Helicobacter pylori, Campylobacter spp., and Clostridium difficile as measured by comparing mean diameters of the inhibition zones were similar. Differences in susceptibility of individual indicator strains of Campylobacter spp. and Clostridium difficile to inhibitory activity of Lactobacillus strains were small. A similar mechanism of inhibition of anaerobic bacteria by lactobacilli is postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号