首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the developing and adult CNS multipotent neural stem cells reside in distinct niches. Specific carbohydrates and glycoproteins are expressed in these niche microenvironments which are important regulators of stem cell maintenance and differentiation fate. LewisX (LeX), also known as stage-specific embryonic antigen-1 or CD15, is a defined carbohydrate moiety expressed in niche microenvironments of the developing and adult CNS. LeX-glycans are involved in stem cell proliferation, migration, and stemness. A few LeX carrier proteins are known, but a systematic analysis of the targets of LeX glycosylation in vivo has not been performed so far. Using LeX glycosylation as a biomarker we aimed to discover new glycoproteins with a potential functional relevance for CNS development. By immunoaffinity chromatography we enriched LeX glycoproteins from embryonic and postnatal mouse brains and used one-dimensional nLC-ESI-MS/MS for their identification. We could validate phosphacan, tenascin-C, and L1-CAM as major LeX carrier proteins present in vivo. Furthermore, we identified LRP1, a member of the LDL receptor family, as a new LeX carrier protein expressed by mouse neural stem cells. Surprisingly, little is known about LRP1 function for neural stem cells. Thus, we generated Lrp1 knock-out neural stem cells by Cre-mediated recombination and investigated their properties. Here, we provide first evidence that LRP1 is necessary for the differentiation of neural stem cells toward oligodendrocytes. However, this function is independent of LeX glycosylation.  相似文献   

2.
Intracellular trafficking of Notch and Notch ligands modulates signaling, suggesting that choreography of ligand and receptor translocation is essential for optimal Notch activity. Indeed, a major model for Notch signaling posits that Notch trans-endocytosis into the ligand-expressing (signal sending) cell is a key driving force for Notch signal transduction. The extracellular protein thrombospondin-2 (TSP2) enhances Notch signaling and binds to both Jagged1 and Notch3 ectodomains, potentially bridging two essential extracellular components of Notch signaling. We investigated the role of low density lipoprotein receptor-related protein-1 (LRP1), a TSP2 receptor, in the regulation of Notch3 signaling. TSP2 potentiation of Notch is blocked by the receptor-associated protein (an inhibitor of low density lipoprotein receptor-related protein function) and requires LRP1 expression in the signal-sending cell. TSP2 stimulates Notch3 endocytosis into wild type fibroblasts but not LRP1-deficient fibroblasts. Finally, recombinant Notch3 and Jagged1 interact with the LRP1 85-kDa B-chain, a subunit that lacks known ligand binding function. Our data suggest that LRP1 and TSP2 stimulate Notch activity by driving trans-endocytosis of the Notch ectodomain into the signal-sending cell and demonstrate a novel, non-cell autonomous function of LRP1 in cell-cell signaling.  相似文献   

3.
Sclerostin is expressed by osteocytes and has catabolic effects on bone. It has been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity, although at present the underlying mechanisms are unclear. Consistent with previous findings, Sclerostin opposed direct Wnt3a-induced but not direct BMP7-induced responses when both ligand and antagonist were provided exogenously to cells. However, we found that when both proteins are expressed in the same cell, sclerostin can antagonize BMP signaling directly by inhibiting BMP7 secretion. Sclerostin interacts with both the BMP7 mature domain and pro-domain, leading to intracellular retention and proteasomal degradation of BMP7. Analysis of sclerostin knock-out mice revealed an inhibitory action of sclerostin on Wnt signaling in both osteoblasts and osteocytes in cortical and cancellous bones. BMP7 signaling was predominantly inhibited by sclerostin in osteocytes of the calcaneus and the cortical bone of the tibia. Our results suggest that sclerostin exerts its potent bone catabolic effects by antagonizing Wnt signaling in a paracrine and autocrine manner and antagonizing BMP signaling selectively in the osteocytes that synthesize simultaneously both sclerostin and BMP7 proteins.  相似文献   

4.
5.
In Helicobacter pylori infection, vacuolating cytotoxin (VacA)-induced mitochondrial damage leading to apoptosis is believed to be a major cause of cell death. It has also been proposed that VacA-induced autophagy serves as a host mechanism to limit toxin-induced cellular damage. Apoptosis and autophagy are two dynamic and opposing processes that must be balanced to regulate cell death and survival. Here we identify the low-density lipoprotein receptor-related protein-1 (LRP1) as the VacA receptor for toxin-induced autophagy in the gastric epithelial cell line AZ-521, and show that VacA internalization through binding to LRP1 regulates the autophagic process including generation of LC3-II from LC3-I, which is involved in formation of autophagosomes and autolysosomes. Knockdown of LRP1 and Atg5 inhibited generation of LC3-II as well as cleavage of PARP, a marker of apoptosis, in response to VacA, whereas caspase inhibitor, benzyloxycarbonyl-VAD-fluoromethylketone (Z-VAD-fmk), and necroptosis inhibitor, Necrostatin-1, did not inhibit VacA-induced autophagy, suggesting that VacA-induced autophagy via LRP1 binding precedes apoptosis. Other VacA receptors such as RPTPα, RPTPβ, and fibronectin did not affect VacA-induced autophagy or apoptosis. Therefore, we propose that the cell surface receptor, LRP1, mediates VacA-induced autophagy and apoptosis.  相似文献   

6.
Although lysines are known to be critical for ligand binding to LDL receptor family receptors, relatively small reductions in affinity have been found when such lysines have been mutated. To resolve this paradox, we have examined the specific binding contributions of four lysines, Lys-253, Lys-256, Lys-270, and Lys-289, in the third domain (D3) of receptor-associated protein (RAP), by eliminating all other lysine residues. Using D3 variants containing lysine subsets, we examined binding to the high affinity fragment CR56 from LRP1. With this simplification, we found that elimination of the lysine pairs Lys-253/Lys-256 and Lys-270/Lys-289 resulted in increases in Kd of 1240- and 100,000-fold, respectively. Each pair contributed additively to overall affinity, with 61% from Lys-270/Lys-289 and 39% from Lys-253/Lys-256. Furthermore, the Lys-270/Lys-289 pair alone could bind different single CR domains with similar affinity. Within the pairs, binding contributions of Lys-270 ≫ Lys-256 > Lys-253 ∼ Lys-289 were deduced. Importantly, however, Lys-289 could significantly compensate for the loss of Lys-270, thus explaining how previous studies have underestimated the importance of Lys-270. Calorimetry showed that favorable enthalpy, from Lys-256 and Lys-270, overwhelmingly drives binding, offset by unfavorable entropy. Our findings support a mode of ligand binding in which a proximal pair of lysines engages the negatively charged pocket of a CR domain, with two such pairs of interactions (requiring two CR domains), appropriately separated, being alone sufficient to provide the low nanomolar affinity found for most protein ligands of LDL receptor family members.  相似文献   

7.
While Wnt and Hgf signaling pathways are known to regulate epithelial cell responses during injury and repair, whether they exhibit functional cross-talk is not well defined. Canonical Wnt signaling is initiated by the phosphorylation of the Lrp5/6 co-receptors. In the current study we demonstrate that Hgf stimulates Met and Gsk3-dependent and Wnt-independent phosphorylation of Lrp5/6 at three separate activation motifs in subconfluent, de-differentiated renal epithelial cells. Hgf treatment stimulates the selective association of active Gsk3 with Lrp5/6. In contrast, Akt-phosphorylated inactive Gsk3 is excluded from this association. Hgf stimulates β-catenin stabilization and nuclear accumulation and protects against epithelial cell apoptosis in an Lrp5/6-dependent fashion. In vivo, the increase in Lrp5/6 phosphorylation and β-catenin stabilization in the first 6–24 h after renal ischemic injury was significantly reduced in mice lacking Met receptor in the renal proximal tubule. Our results thus identify Hgf as an important transactivator of canonical Wnt signaling that is mediated by Met-stimulated, Gsk3-dependent Lrp5/6 phosphorylation.  相似文献   

8.
We report characterization of the soluble form of the low density lipoprotein receptor-related protein (sLRP) which circulates in human plasma. Amino acid sequence analysis confirmed that sLRP isolated from human plasma contains the alpha-chain of LRP1. In addition, Western blot analysis identified a truncated beta-chain noncovalently associated with the purified alpha-chain. The molecular size (M(r) 55K) of the peptide portion of the truncated beta-chain indicates that the subunit comprises the extracellular portion of the beta-chain and terminates in a membrane-proximal region. We investigated the mechanism by which sLRP may be generated using the trophoblast cell line, BeWo, which releases sLRP in culture. Cell surface labeling experiments indicate that LRP is released from BeWo cells following expression at the cell surface. Incubation of BeWo cells in the presence of a metalloproteinase inhibitor, INH-3855-PI, results in a dose-dependent inhibition of LRP shedding. The metalloproteinase responsible for the shedding of LRP by BeWo cells is not up-regulated by phorbol ester and is not dependent on serine proteases, such as plasmin, for activity. The BeWo cell line is derived from a human gestational choriocarcinoma and preliminary studies suggest that LRP may be shed within the placenta during gestation. Increased levels of sLRP were detected in cord blood. In term placenta, LRP is expressed in the syncytium, which comprises the maternal-fetal interface. Increased levels of sLRP in cord blood may reflect cellular dysfunction and increased metalloproteinase activity at this important interface.  相似文献   

9.
Transplantation of mesenchymal stem cells (MSCs) is a promising therapy for ischemic injury; however, inadequate survival of implanted cells in host tissue is a substantial impediment in the progress of cellular therapy. Secreted Frizzled-related protein 2 (sFRP2) has recently been highlighted as a key mediator of MSC-driven myocardial and wound repair. Notably, sFRP2 mediates significant enhancement of MSC engraftment in vivo. We hypothesized that sFRP2 improves MSC engraftment by modulating self-renewal through increasing stem cell survival and by inhibiting differentiation. In previous studies we demonstrated that sFRP2-expressing MSCs exhibited an increased proliferation rate. In the current study, we show that sFRP2 also decreased MSC apoptosis and inhibited both osteogenic and chondrogenic lineage commitment. sFRP2 activity occurred through the inhibition of both Wnt and bone morphogenic protein (BMP) signaling pathways. sFRP2-mediated inhibition of BMP signaling, as assessed by levels of pSMAD 1/5/8, was independent of its effects on the Wnt pathway. We further hypothesized that sFRP2 inhibition of MSC lineage commitment may reduce heterotopic osteogenic differentiation within the injured myocardium, a reported adverse side effect. Indeed, we found that sFRP2-MSC-treated hearts and wound tissue had less ectopic calcification. This work provides important new insight into the mechanisms by which sFRP2 increases MSC self-renewal leading to superior tissue engraftment and enhanced wound healing.  相似文献   

10.
Low density lipoprotein receptor-related protein (LRP1) mediates the internalization of aggregated LDL (AgLDL), which in turn increases the expression of LRP1 in human vascular smooth muscle cells (hVSMCs). This positive feedback mechanism is thus highly efficient to promote the formation of hVSMC foam cells, a crucial vascular component determining the susceptibility of atherosclerotic plaque to rupture. Here we have determined the LRP1 domains involved in AgLDL recognition with the aim of specifically blocking AgLDL internalization in hVSMCs. The capacity of fluorescently labeled AgLDL to bind to functional LRP1 clusters was tested in a receptor-ligand fluorometric assay made by immobilizing soluble LRP1 “minireceptors” (sLRP1-II, sLRP1-III, and sLRP1-IV) recombinantly expressed in CHO cells. This assay showed that AgLDL binds to cluster II. We predicted three well exposed and potentially immunogenic peptides in the CR7–CR9 domains of this cluster (termed P1 (Cys1051–Glu1066), P2 (Asp1090–Cys1104), and P3 (Gly1127–Cys1140)). AgLDL, but not native LDL, bound specifically and tightly to P3-coated wells. Rabbit polyclonal antibodies raised against P3 prevented AgLDL uptake by hVSMCs and were almost twice as effective as anti-P1 and anti-P2 Abs in reducing intracellular cholesteryl ester accumulation. Moreover, anti-P3 Abs efficiently prevented AgLDL-induced LRP1 up-regulation and counteracted the down-regulatory effect of AgLDL on hVSMC migration. In conclusion, domain CR9 appears to be critical for LRP1-mediated AgLDL binding and internalization in hVSMCs. Our results open new avenues for an innovative anti-VSMC foam cell-based strategy for the treatment of vascular lipid deposition in atherosclerosis.  相似文献   

11.
Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13–800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association.  相似文献   

12.
在兔主动脉平滑肌细胞 ( SMC)培养基中分别加入正常低密度脂蛋白 ( N- LDL)、氧化低密度脂蛋白 ( ox- LDL)、正常极低密度脂蛋白 ( N- VLDL)、氧化极低密度脂蛋白 ( ox- VLDL)和 β-极低密度脂蛋白 (β- VLDL )培养 2 4 h后 ,用定量 RT- PCR和配体结合实验检测平滑肌细胞 LRP的m RNA和蛋白质水平的表达 .结果表明 :五种脂蛋白均能在转录和翻译水平诱导兔主动脉平滑肌细胞的 LRP表达 ,尤以富含胆固醇的 N- LDL ,ox- LDL和β- VLDL的刺激作用更明显 .用胆固醇单独或与脂蛋白共同温育 SMC后 ,发现胆固醇本身可促进 SMC的 LRP蛋白水平的表达 ,脂蛋白与胆固醇的共同刺激作用更为显著 .结果提示 :上述五种脂蛋白对 SMC上 LRP的表达有上调作用 ,其机制可能主要是通过其中的胆固醇来实现的 .  相似文献   

13.
Skeletal muscle regeneration is mediated by satellite cells (SCs). Upon injury, SCs undergo self-renewal, proliferation, and differentiation into myoblasts followed by myoblast fusion to form new myofibers. We previously showed that the heparan sulfate (HS) 6-O-endosulfatases (Sulf1 and -2) repress FGF signaling to induce SC differentiation during muscle regeneration. Here, we identify a novel role of Sulfs in myoblast fusion using a skeletal muscle-specific Sulf double null (SulfSK-DN) mouse. Regenerating SulfSK-DN muscles exhibit reduced canonical Wnt signaling and elevated non-canonical Wnt signaling. In addition, we show that Sulfs are required to repress non-canonical Wnt signaling to promote myoblast fusion. Notably, skeletal muscle-relevant non-canonical Wnt ligands lack HS binding capacity, suggesting that Sulfs indirectly repress this pathway. Mechanistically, we show that Sulfs reduce the canonical Wnt-HS binding and regulate colocalization of the co-receptor LRP5 with caveolin3. Therefore, Sulfs may increase the bioavailability of canonical Wnts for Frizzled receptor and LRP5/6 interaction in lipid raft, which may in turn antagonize non-canonical Wnt signaling. Furthermore, changes in subcellular distribution of active focal adhesion kinase (FAK) are associated with the fusion defect of Sulf-deficient myoblasts and upon non-canonical Wnt treatment. Together, our findings uncover a critical role of Sulfs in myoblast fusion by promoting antagonizing canonical Wnt signaling activities against the noncanonical Wnt pathway during skeletal muscle regeneration.  相似文献   

14.
Mesenchymal cells alter and retain their phenotype during skeletal development through activation or suppression of signaling pathways. For example, we have shown that Wnt3a only stimulates osteoblast differentiation in cells with intrinsic osteogenic potential (e.g. MC3T3-E1 pre-osteoblasts) and not in fat cell precursors or fibroblasts (3T3-L1 pre-adipocytes or NIH3T3 fibroblasts, respectively). Wnt3a promotes osteogenesis in part by stimulating autocrine production of the osteoinductive ligand Bmp2. Here, we show that the promoter regions of the genes for Bmp2 and the osteoblast marker Alp are epigenetically locked to prevent their expression in nonosteogenic cells. Both genes have conserved CpG islands that exhibit increased CpG methylation, as well as decreased acetylation and increased methylation of histone H3 lysine 9 (H3-K9) specifically in nonosteogenic cells. Treatment of pre-adipocytes or fibroblasts with the CpG-demethylating agent 5′-aza-2′-deoxycytidine or the histone deacetylase inhibitor trichostatin-A renders Bmp2 and Alp responsive to Wnt3a. Hence, drug-induced epigenetic activation of Bmp2 gene expression contributes to Wnt3a-mediated direct trans-differentiation of pre-adipocytes or fibroblasts into osteoblasts. We propose that direct conversion of nonosteogenic cells into osteoblastic cell types without inducing pluripotency may improve prospects for novel epigenetic therapies to treat skeletal afflictions.  相似文献   

15.
WNT1-inducible-signaling pathway protein 2 (WISP2) is primarily expressed in mesenchymal stem cells, fibroblasts, and adipogenic precursor cells. It is both a secreted and cytosolic protein, the latter regulating precursor cell adipogenic commitment and PPARγ induction by BMP4. To examine the effect of the secreted protein, we expressed a full-length and a truncated, non-secreted WISP2 in NIH3T3 fibroblasts. Secreted, but not truncated WISP2 activated the canonical WNT pathway with increased β-catenin levels, its nuclear targeting phosphorylation, and LRP5/6 phosphorylation. It also inhibited Pparg activation and the effect of secreted WISP2 was reversed by the WNT antagonist DICKKOPF-1. Differentiated 3T3-L1 adipose cells were also target cells where extracellular WISP2 activated the canonical WNT pathway, inhibited Pparg and associated adipose genes and, similar to WNT3a, promoted partial dedifferentiation of the cells and the induction of a myofibroblast phenotype with activation of markers of fibrosis. Thus, WISP2 exerts dual actions in mesenchymal precursor cells; secreted WISP2 activates canonical WNT and maintains the cells in an undifferentiated state, whereas cytosolic WISP2 regulates adipogenic commitment.  相似文献   

16.
The planar cell polarity (PCP) pathway is a conserved non-canonical (β-catenin-independent) branch of Wnt signaling crucial to embryogenesis, during which it regulates cell polarity and polarized cell movements. Disruption of PCP components in mice, including Vangl2 and Dact1, results in defective neural tube closure and other developmental defects. Here, we show that Sestd1 is a novel binding partner of Vangl2 and Dact1. The Sestd1-Dact1 interface is formed by circumscribed regions of Sestd1 (the carboxyl-terminal region) and Dact1 (the amino-terminal region). Remarkably, we show that loss of Sestd1 precisely phenocopies loss of Dact1 during embryogenesis in mice, leading to a spectrum of birth malformations, including neural tube defects, a shortened and/or curly tail, no genital tubercle, blind-ended colons, hydronephrotic kidneys, and no bladder. Moreover, as with Dact1, a knock-out mutation at the Sestd1 locus exhibits reciprocal genetic rescue interactions during development with a semidominant mutation at the Vangl2 locus. Consistent with this, examination of Wnt pathway activities in Sestd1 mutant mouse embryonic tissue reveals disrupted PCP pathway biochemistry similar to that characterized in Dact1 mutant embryos. The Sestd1 protein is a divergent member of the Trio family of GTPase regulatory proteins that lacks a guanine nucleotide exchange factor domain. Nonetheless, in cell-based assays the Sestd1-Dact1 interaction can induce Rho GTPase activation. Together, our data indicate that Sestd1 cooperates with Dact1 in Vangl2 regulation and in the PCP pathway during mammalian embryonic development.  相似文献   

17.
In the central nervous system (CNS), fast neuronal signals are facilitated by the oligodendrocyte-produced myelin sheath. Oligodendrocyte turnover or injury generates myelin debris that is usually promptly cleared by phagocytic cells. Failure to remove dying oligodendrocytes leads to accumulation of degraded myelin, which, if recognized by the immune system, may contribute to the development of autoimmunity in diseases such as multiple sclerosis. We recently identified low density lipoprotein receptor-related protein-1 (LRP1) as a novel phagocytic receptor for myelin debris. Here, we report characterization of the LRP1 interactome in CNS myelin. Fusion proteins were designed corresponding to the extracellular ligand-binding domains of LRP1. LRP1 partners were isolated by affinity purification and characterized by mass spectrometry. We report that LRP1 binds intracellular proteins via its extracellular domain and functions as a receptor for necrotic cells. Peptidyl arginine deiminase-2 and cyclic nucleotide phosphodiesterase are novel LRP1 ligands identified in our screen, which interact with full-length LRP1. Furthermore, the extracellular domain of LRP1 is a target of peptidyl arginine deiminase-2-mediated deimination in vitro. We propose that LRP1 functions as a receptor for endocytosis of intracellular components released during cellular damage and necrosis.  相似文献   

18.
19.
Collapsin response mediator proteins are ubiquitously expressed from multiple genes (CRMPs 1-5) and play important roles in dividing cells and during semaphorin 3A (Sema3A) signaling. Nonetheless, their mode of action remains opaque. Here we carried out in vivo and in vitro assays that demonstrate that CRMPs are a new class of microtubule-associated protein (MAP). In experiments with CRMP1 or CRMP2 and their derivatives, only the C-terminal region (residues 490-572) mediated microtubule binding. The in vivo microtubule association of CRMPs was abolished by taxol or epothilone B, which is highly unusual. CRMP2-depleted cells exhibited destabilized anaphase astral microtubules and altered spindle position. In a cell-based assay, all CRMPs stabilized interphase microtubules against nocodazole-mediated depolymerization, with CRMP1 being the most potent. Remarkably, a 82-residue C-terminal region of CRMP1 or CRMP2, unrelated to other microtubule binding motifs, is sufficient to stabilize microtubules. In cells, we demonstrate that glycogen synthase kinase-3β (GSK3β) inhibition potentiates this activity. Thus, CRMPs are a new class of MAP that binds through a unique motif, but in common with others such as Tau, is antagonized by GSK3β. This regulation is consistent with such kinases being critical for the Sema3A (collapsin) pathway. These findings have implications for cancer and neurodegeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号