共查询到20条相似文献,搜索用时 15 毫秒
1.
Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization 总被引:1,自引:0,他引:1
S. Siripattanakul W. Wirojanagud J. McEvoy T. Limpiyakorn E. Khan 《Journal of applied microbiology》2009,106(3):986-992
Aims: The aim of this work was to enrich stable mixed cultures from atrazine-contaminated soil. The cultures were examined for their atrazine biodegradation efficiencies in comparison with J14a, a known atrazine-degrading strain of Agrobacterium radiobacter . The cultures were also characterized to identify community structure and bacterial species present.
Methods and Results: The cultures were enriched and then stabilized in bacterial media. The stable mixed cultures and J14a were tested in a medium containing 100 μg l−1 of atrazine. For all cultures, atrazine was removed 33–51% within 7 days and the cell optical density increased from 0·05 to between 0·50 and 0·70. Four isolates designated ND1, ND2, ND3 and ND4 were purified from the mixed cultures and identified based on sequence analysis of the 16 S rRNA gene as Alcaligenes faecalis , Klebsiella ornithinolytica , Bacillus megaterium and Agrobacterium tumefaciens , respectively. An atrazine-degrading gene, atzA , was present in ND2 and ND4.
Conclusions: The stable mixed cultures obtained could degrade atrazine. Klebsiella ornithinolytica ND2 and Ag. tumefaciens ND4 are atrazine degraders.
Significance and Impact of the Study: The novel stable mixed cultures could be used for bioremediating crop fields contaminated with atrazine. This is the first report of the atzA gene in Kl. ornithinolytica . 相似文献
Methods and Results: The cultures were enriched and then stabilized in bacterial media. The stable mixed cultures and J14a were tested in a medium containing 100 μg l
Conclusions: The stable mixed cultures obtained could degrade atrazine. Klebsiella ornithinolytica ND2 and Ag. tumefaciens ND4 are atrazine degraders.
Significance and Impact of the Study: The novel stable mixed cultures could be used for bioremediating crop fields contaminated with atrazine. This is the first report of the atzA gene in Kl. ornithinolytica . 相似文献
2.
3.
Chitin degradation by Clostridium sp. strain 9.1 in mixed cultures with saccharolytic and sulfate-reducing bacteria 总被引:1,自引:0,他引:1
Abstract The fermentation of chitin was studied in pure and cocultures of the chitinolytic Clostridium strain 9.1 and various non-hydrolytic sugar-fermenting and sulfate-reducing bacteria. A 5- to 8-fold enhancement of the rate of chitin degradation was observed, which was not due to the alleviation of inhibition of the chitinolytic enzyme system by polymer hydrolysis products. This was concluded from the observation that rates of chitinolysis and fermentation were unaffected by the addition of N -acetylglucosamine (NAG) or NAG-oligomers to pure cultures of strain 9.1, and from the absence of an unequivocal relation between the ability of a secondary bacterium to consume potentially inhibitory hydrolysis products and its capacity to stimulate chitin degradation. The acceleration of chitin fermentation in the presence of sugar-fermenting bacteria was the result of a release by these secondary populations of growth factors essential to strain 9.1. These factors comprised a high molecular, thioredoxin-like compound responsible for enhanced chitinolytic activity [10], and various low molecular compounds necessary for optimal growth. The sulfate reducers (except Desulfovibrio sp. strain 20028) released primarily the high molecular growth factor in coculture with strain 9.1. NAG-fermenting bacteria consumed approximately 10% of the hydrolysis products, whereas species capable of utilizing both mono- and oligomeric sugars fermented at least 50% of the sugars produced by strain 9.1. Nevertheless, the rate of chitinolysis in these cocultures proceeded at very similar rates.
The observed interactions between Clostridium sp. strain 9.1 and the secondary populations are discussed in relation to the results from studies on mixed culture fermentations of cellulosic substrates reported in the literature. 相似文献
The observed interactions between Clostridium sp. strain 9.1 and the secondary populations are discussed in relation to the results from studies on mixed culture fermentations of cellulosic substrates reported in the literature. 相似文献
4.
J Møller P Winther B Lund K Kirkebjerg P Westermann 《Journal of industrial microbiology & biotechnology》1996,16(2):110-116
The effects of bioventing, nutrient addition and inoculation with an oil-degrading bacterium on biodegradation of diesel oil in unsaturated soil were investigated. A mesocosm system was constructed consisting of six soil compartments each containing 6 m3 of naturally contaminated soil mixed 11 with silica sand, resulting in a diesel oil content of approximately 2000 mg kg–1. Biodegradation was monitored over 112 days by determining the actual diesel oil content of the soil and by respirometric tests. The best agreement between calculations of degradation rates based upon the two methods was in July, when venting in combination with nutrient addition resulted in degradation rates of 23 mg kg–1 day–1 based on actual oil concentration in the soil and 33 mg kg–1 day–1 calculated from respirometric data. In September, these rates decreased to 9 and 1.4 mg kg–1 day–1, and in October the degradation rates were 5 and 0.7 mg kg–1 day–1 based upon the two methods. The average ambient temperature during the respirometric tests was 14,10 and 2°C in July, September and October, respectively. The combination of venting and nutrient addition resulted in an average residual oil content of the soil of 380 mg kg–1. Neither venting alone nor inoculation enhanced oil degradation. The respiratory quotient averaged 0.40. The oil composition changed following degradation resulting in the unresolved complex mixture constituting up to 96% of the total oil content at the end of the experimental period. 相似文献
5.
Alina Pechorsky Yeshayahu Nitzan Tsilia Lazarovitch 《Journal of microbiological methods》2009,78(3):325-330
Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Acinetobacter baumanii, and Klebsiella pneumoniae were found to be the most prevalent bacteremia-causing bacteria in a survey in a medical center. A PCR method for identification of these five most common pathogens in blood cultures was developed. A unique sequence was chosen for each pathogen and used for primer design. Sixty-one blood samples (from hospitalized patients) in which bacterial growth was detected were processed in parallel by conventional microbiological methods and by the PCR method. The results obtained by PCR were identical to those obtained by conventional methods in 93.4% of the cases. PCR failed to identify bacteria which were found conventionally in only 6.6% of the cases (mostly bacteria not included in the PCR cassette). Another group of eighty-eight blood samples from patients were processed immediately upon their arrival at the laboratory by taking aliquots for the PCR method. The blood sample bottles were processed in parallel by conventional methods. In 78.4% of the cases the results of both methods were identical. In 12.5% of the cases, PCR afforded identification of bacteria but conventional methods showed no bacteria in the sample. On the other hand, PCR afforded 9.1% negative results while conventional methods identified bacteria not included in the PCR cassette. It is concluded that the molecular method appears to be a specific and precise method for identifying pathogenic bacteria in blood samples. 相似文献
6.
Commercial lipases were examined for their degradation efficiency of aliphatic polyester films. In 100 days immersion of polyester films in lipase solutions at37 °C at pH 7.0,Lipase Asahi derived from Chromobacterium viscosum degraded polybutylene succinate-co-adipate (PBSA), poly (-caprolactone) (PCL) and polybutylene succinate (PBS), and Lipase F derived from Rhizopus niveus degraded PBSA and PCL during 4–17 days. Lipase F-AP15 derived fromRhizopus orizae could degrade PBSA in 22 days. In these cases, PBS and PBSA were mainly degraded to dimers, whereas PCL was mainly degraded to monomers. Only poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHB/V) and poly (L-lactide) (PLA) were not degraded in the experiments. However, PLA degraded completely at 55 °C, pH 8.5 with Lipase PL during 20 days. This result could be explained with the sequential reactions of the chemical hydrolysis of the polymer to oligomers at higher pH and temperature, and the succeeding enzymatic hydrolysis of oligomers to the monomers. 相似文献
7.
Isolation and characterization of bacteria from soil contaminated with diesel oil and the possible use of these in autochthonous bioaugmentation 总被引:1,自引:0,他引:1
Akio Ueno Yukiya Ito Isao Yumoto Hidetoshi Okuyama 《World journal of microbiology & biotechnology》2007,23(12):1739-1745
Two bacterial species (isolates N and O) were isolated from a paddy soil microcosm that had been artificially contaminated
with diesel oil to which extrinsic Pseudomonas
aeruginosa strain WatG, had been added exogenously. One bacterial species (isolate J) was isolated from a similar soil microcosm that
had been biostimulated with Luria–Bertani (LB) medium. Isolates N and O, which were tentatively identified as Stenotrophomonas sp. and Ochromonas sp., respectively, by sequencing of their 16 S rRNA genes had no ability to degrade diesel oil on their own in any liquid
medium. When each strain was cocultivated with P. aeruginosa strain WatG in liquid mineral salts medium (MSM) containing 1% diesel oil, isolate N enhanced the degradation of diesel oil
by P. aeruginosa strain WatG, but isolate O inhibited it. In contrast, isolate J, which was tentatively identified as a Rhodococcus sp., degraded diesel oil contained not only in liquid LB and MSM, but also in paddy soil microcosms supplemented with LB
medium. The bioaugmentation capacity of isolate J in soil microcosms contaminated with diesel oil was much higher than that
of P. aeruginosa strain WatG. The possibility of using isolate J for autochthonous bioaugmentation is discussed. 相似文献
8.
Bacterial communities that cooperatively degrade atrazine commonly consist of diverse species in which the genes for atrazine dechlorination and dealkylation are variously distributed among different species. Normally, the first step in degradation of atrazine involves dechlorination mediated by atzA, followed by stepwise dealkylation to yield either N-ethylammelide or N-isopropylammelide. As the liberated alkylamine moieties are constituents of many organic molecules other than atrazine, it is possible that a large number of alkylamine-degrading bacteria other than those previously described might contribute to this key step in atrazine degradation. To examine this hypothesis, we isolated 82 bacterial strains from soil by plating soil water extracts on agar media with ethylamine as a sole carbon source. Among the relatively large number of isolates, only 3 were able to degrade N-ethylammelide, and in each case were shown to carry the atzB gene and atzC genes. The isolates, identified as Rhizobium leguminosarum, Flavobacterium sp., and Arthrobacter sp., were all readily substituted into an atrazine-degrading consortium to carry out N-ethylammelide degradation. The distribution of these genes among many different species in the soil microbial population suggests that these genes are highly mobile and over time may lead to generation of various atrazine-degrading consortia. 相似文献
9.
高效降解机油微生物的筛选及除油效果初探 总被引:7,自引:0,他引:7
从多处受石油及其制品污染的土壤中筛选到六株对高浓度机油等相关石油制品具有降解能力的微生物菌种。对该六株菌种的单独和混合降解机油的效果进行了研究,并考察了营养成分对机油降解的影响。实验表明:Px01菌种具有最强的除油能力,在合适条件下,Px01培养液的机油降解速率可达0.502g/L.d。混合菌的除油效果明显好于单菌,最高降解速率可到0.64g/L.d。混合菌的营养要求较低,添加有机营养元素对混合微生物的生长和机油降解没有显著的促进作用。由于所筛选驯化得到的微生物菌种针对高浓度含机油废水的降油效果显著,因此具有良好的应用前景。 相似文献
10.
C. Gertler G. Gerdts K.N. Timmis M.M. Yakimov P.N. Golyshin 《Journal of applied microbiology》2009,107(2):590-605
Aims: To investigate the feasibility of applying sorbent material X-Oil® in marine oil spill mitigation and to survey the interactions of oil, bacteria and sorbent.
Methods and Results: In a series of microcosms, 25 different treatments including nutrient amendment, bioaugmentation with Alcanivorax borkumensis and application of sorbent were tested. Microbial community dynamics were analysed by DNA fingerprinting methods, RISA and DGGE. Results of this study showed that the microbial communities in microcosms with highly active biodegradation were strongly selected in favour of A. borkumensis . Oxygen consumption measurements in microcosms and gas chromatography of oil samples indicated the fast and intense depletion of linear alkanes as well as high oxygen consumption within 1 week followed by consequent slower degradation of branched and polyaromatic hydrocarbons.
Conclusion: Under given conditions, A. borkumensis was an essential organism for biodegradation, dominating the biofilm microbial community formation and was the reason of emulsification.
Significance and Impact of the Study: This study strongly emphasizes the pivotal importance of A. borkumensis as an essential organism in the initial steps of marine hydrocarbon degradation. Interaction with the sorbent material X-Oil® proved to be neutral to beneficial for biodegradation and also promoted the growth of yet unknown micro-organisms. 相似文献
Methods and Results: In a series of microcosms, 25 different treatments including nutrient amendment, bioaugmentation with Alcanivorax borkumensis and application of sorbent were tested. Microbial community dynamics were analysed by DNA fingerprinting methods, RISA and DGGE. Results of this study showed that the microbial communities in microcosms with highly active biodegradation were strongly selected in favour of A. borkumensis . Oxygen consumption measurements in microcosms and gas chromatography of oil samples indicated the fast and intense depletion of linear alkanes as well as high oxygen consumption within 1 week followed by consequent slower degradation of branched and polyaromatic hydrocarbons.
Conclusion: Under given conditions, A. borkumensis was an essential organism for biodegradation, dominating the biofilm microbial community formation and was the reason of emulsification.
Significance and Impact of the Study: This study strongly emphasizes the pivotal importance of A. borkumensis as an essential organism in the initial steps of marine hydrocarbon degradation. Interaction with the sorbent material X-Oil
11.
A. A. Vetrova I. A. Nechaeva A. A. Ignatova I. F. Puntus M. U. Arinbasarov A. E. Filonov A. M. Boronin 《Microbiology》2007,76(3):310-316
The ability of microbial degraders of polycyclic aromatic hydrocarbons to grow at 24°C in liquid mineral medium supplemented with oil as the sole source of carbon and energy was studied. Growth characteristics (CFU) and the level of oil destruction by plasmid-bearing and plasmid-free strains were determined after seven days of cultivation. The presence of catabolic plasmids in the degrader strains, including rhizosphere pseudomonads, was shown to increase cell growth and enhance the level of oil degradation. Strain Pseudomonas chlororaphis BS1391 bearing plasmid pBS216 was found to be the most effective oil degrader. 相似文献
12.
一株原油降解菌的分离鉴定及降解特性研究 总被引:1,自引:0,他引:1
[目的]对从大连湾原油污染海域生长的海绵中分离的原油降解菌2-9进行鉴定及降解特性研究.[方法]采用16S rRNA基因序列同源性分析、生理生化指标测定、DNAG+C含量测定、全细胞脂肪酸组成测定、碳源利用实验等多种方法对该菌株进行鉴定,并通过降解实验测定其对原油的降解情况.[结果]菌株2-9鉴定为Nitratireductor basaltis,革兰氏阴性,接触酶和氧化酶阳性.在GenBank中与其16S rRNA基因序列相似度最高的模式株为Nitratireductor basaltis J3T,相似性为99%.可生长的pH范围为6.0-10.0,最适生长pH值为8.0;可生长温度范围为15℃-42℃,最适生长温度为30℃; NaCl浓度生长范围是0-8%(W/V),最适生长盐度为2%.该菌株可以利用多种糖和有机酸的碳源,其DNA G+C含量为57.29 mol%,主要脂肪酸组成为ω7c-十八碳单不饱和脂肪酸(63.61%)、ω8c型环式十九碳饱和脂肪酸(16.97%)、饱和十八碳脂肪酸(4.28%)和十六碳饱和脂肪酸(3.39%).同时,考察了该菌株对原油的降解效果,在人工海水培养基中,14d内对原油(初始浓度为1 g/L)的平均降解率为63.5%.[结论]菌株2-9是一株具有开发潜力的原油降解菌. 相似文献
13.
以苯酚为唯一碳源,采用富集培养方法,从陕北靖边油田污染土壤中分离获得1株苯酚高效降解菌(ad049),对菌株进行形态观察、生理生化检验及16S rDNA序列分析,确定该菌株为红球菌(Rhodococcus)。采用摇瓶振荡培养方法,研究了接种量、pH值、温度和底物浓度对ad049生长量和苯酚降解率的影响,同时对该菌株脱氢酶和邻苯二酚双加氧酶活性进行了测定。结果表明,ad049具有较强的苯酚降解能力;在苯酚浓度1000 mg/L,温度35℃,pH值8,接种量5%的培养条件下,反应24 h后,苯酚降解率达99%以上,且整个降解过程符合零级动力学方程,速率常数k_0=41.51,相关系数R~2=0.96。通过邻苯二酚双加氧酶活性的测定,推测出该菌株降解苯酚的途径可能是以邻苯二酚1,2双加氧酶为主要途径进行邻位开环,辅以邻苯二酚2,3双加氧酶进行间位开环。 相似文献
14.
两种海洋专性解烃菌降解石油的协同效应 总被引:3,自引:0,他引:3
【目的】为研究在石油降解过程中海洋专性解烃菌的协同效应。【方法】以食烷菌22CO-6、JZ9B和海杆菌PY97S为实验材料构建石油降解菌群,采用重量法、气相色谱氢火焰离子化检测器、气相色谱质谱联用及棒薄层色谱等多种手段分析、比较降解菌纯培养和降解菌群对原油的降解率及石油降解后产物的多元色谱图。【结果】构建的降解菌群22CO-6+PY97S和JZ9B+PY97S中2种专性解烃菌具有明显的协同效应。与石油烃降解菌22CO-6、JZ9B单菌降解相比,PAHs降解菌PY97S的加入,可以使原油降解率从27.81%、83.52%分别提高到64.03%和86.89%,同时促进石油中烷烃、芳香烃组分包括高分子量多环芳烃chrysene及其衍生物的降解。【结论】在石油降解过程中海洋专性解烃菌之间存在明显的协同效应,不仅可以加快石油降解,还可以彻底降解石油中生态毒性较大的高分子量化合物。 相似文献
15.
Yomi Watanabe Praphan Pinsirodom Toshihiro Nagao Asao Yamauchi Takashi Kobayashi Yutaka Nishida Yoshiaki Takagi Yuji Shimada 《Journal of Molecular Catalysis .B, Enzymatic》2007,44(3-4):99-105
Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols, and is a candidate of materials for production of biodiesel fuel. A mixture (acid oil model) of refined FFAs and vegetable oil was recently reported to be converted to fatty acid methyl esters (FAMEs) at >98% conversion by a two-step reaction system comprising methyl esterification of FFAs and methanolysis of acylglycerols using immobilized Candida antarctica lipase. The two-step system was thus applied to conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel. Under similar conditions that were determined by using acid oil model, however, the lipase was unstable and was not durable for repeated use. The inactivation of the lipase was successfully avoided by addition of excess amounts of methanol (MeOH) in the first-step reaction, and by addition of vegetable oil and glycerol in the second-step reaction. Hence, the first-step reaction was conducted by shaking a mixture of 66 wt% acid oil (77.9 wt% FFAs, 10.8 wt% acylglycerols) and 34 wt% MeOH with 1 wt% immobilized lipase, to convert FFAs to their methyl esters. The second-step reaction was performed by shaking a mixture of 52.3 wt% dehydrated first-step product (79.7 wt% FAMEs, 9.7 wt% acylglycerols), 42.2 wt% rapeseed oil, and 5.5 wt% MeOH using 6 wt% immobilized lipase in the presence of additional 10 wt% glycerol, to convert acylglycerols to FAMEs. The resulting product was composed of 91.1 wt% FAMEs, 0.6 wt% FFAs, 0.8 wt% triacylglycerols, 2.3 wt% diacylglycerols, and 5.2 wt% other compounds. Even though each step of reaction was repeated every 24 h by transferring the immobilized lipase to the fresh substrate mixture, the composition was maintained for >100 cycles. 相似文献
16.
Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum 下载免费PDF全文
Giuseppe G. F. Leite Juciane V. Figueirôa Thiago C. M. Almeida Jaqueline L. Valões Walber F. Marques Maria D. D. C. Duarte Krystyna Gorlach‐Lira 《Biotechnology progress》2016,32(2):262-270
Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram‐positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram‐negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6‐dichlorophenolindophenol (2,6‐DCPIP) while 16 had the gene alkane mono‐oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262–270, 2016 相似文献
17.
Jong BC Liew PW Lebai Juri M Kim BH Mohd Dzomir AZ Leo KW Awang MR 《Letters in applied microbiology》2011,53(6):660-667
Aim: To evaluate the bioenergy generation and the microbial community structure from palm oil mill effluent using microbial fuel cell. Methods and Results: Microbial fuel cells enriched with palm oil mill effluent (POME) were employed to harvest bioenergy from both artificial wastewater containing acetate and complex POME. The microbial fuel cell (MFC) showed maximum power density of 3004 mW m?2 after continuous feeding with artificial wastewater containing acetate substrate. Subsequent replacement of the acetate substrate with complex substrate of POME recorded maximum power density of 622 mW m?2. Based on 16S rDNA analyses, relatively higher abundance of Deltaproteobacteria (88·5%) was detected in the MFCs fed with acetate artificial wastewater as compared to POME. Meanwhile, members of Gammaproteobacteria, Epsilonproteobacteria and Betaproteobacteria codominated the microbial consortium of the MFC fed with POME with 21, 20 and 18·5% abundances, respectively. Conclusions: Enriched electrochemically active bacteria originated from POME demonstrated potential to generate bioenergy from both acetate and complex POME substrates. Further improvements including the development of MFC systems that are able to utilize both fermentative and nonfermentative substrates in POME are needed to maximize the bioenergy generation. Significance and Impact of the Study: A better understanding of microbial structure is critical for bioenergy generation from POME using MFC. Data obtained in this study improve our understanding of microbial community structure in conversion of POME to electricity. 相似文献
18.
D. Yildiz M. Arik Y. Cakir Z. Civi 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2009,3(2):157-162
The objective of the present study was to compare cysteine and N-acetyl-L-cysteine in respect to their transmembrane fluxes and find out which one is a better available precursor for the cells and thus better supports the intracellular glutathione synthesis. Cysteine can directly participate in glutathione synthesis, whereas N-acetyl-L-cysteine must be first deacetylated before its incorporation to glutathione. In the present study we investigated and compared the efficiencies of cysteine and N-acetyl-L-cysteine influx and efflux through the erythrocyte membrane. Erythrocytes transported both cysteine and N-acetyl-L-cysteine in a concentration-dependent manner. However, our results demonstrated that cysteine crosses the erythrocyte membranes more efficiently as compared to N-acetyl-L-cysteine. Treatment of erythrocytes with 5 mM of cysteine or N-acetyl-L-cysteine for 1 hr raised the intracellular free sulfhydryl group (free-SH) levels to 3.37 ± 0.006 or 2.23 ± 0.08 μ mol/ml erythrocyte, respectively. Cysteine more effectively than N-acetyl-L-cysteine restored the intracellular free-SH level depleted beforehand. In erythrocytes previously depleted of free-SH, 5 mM cysteine raised the free-SH level to 1.45 ± 0.075 μ mol/ml within 1 hr, whereas N-acetyl-L-cysteine at the same concentration raised this level to 0.377 ± 0.034 μmol/ml only. The results of our study also revealed that both cysteine and N-acetyl-L-cysteine influx and efflux processes are temperature dependent indicating that their transport requires biological activity. Our results demonstrate that cysteine is a better thiol precursor for the erythrocytes. Availability of cysteine for the cells is higher than that of N-acetyl-L-cysteine. The article is published in the original. 相似文献
19.
【目的】系统研究吸附法和同时培养法对所形成混合菌丝球的外观形态、内部结构及其去除2-氯酚效果的影响。【方法】采用吸附法和同时培养法将可降解2-氯酚的光合细菌PSB-1D固定在黄孢原毛平革菌(Phanerochaete chrysosporium)DH-1发酵而成的菌丝球上,形成混合菌丝球。以单一菌丝球为对照,利用光学显微镜、扫描电镜等仪器观察混合菌丝球的外观形态和内部结构,考察2种方法对混合菌丝球成球效果的影响;以无菌培养液为空白对照,考察游离光合细菌、单一菌丝球、2种方法形成混合菌丝球对2-氯酚的降解效能。【结果】在吸附法形成的混合菌丝球上,光合细菌主要集中在过渡区;而同时培养法将光合细菌牢固地包埋在菌丝球内核区,并大量簇状附着生长在菌丝交联的空隙处和每根菌丝上。在接种等量孢子和光合细菌的前提下,同时培养法较吸附法操作时间更短,成球数量更多,形成菌丝球干湿比更大,单位菌丝干重上固定的细菌数量更多。菌丝球降解体系和游离光合细菌对2-氯酚的降解均符合一级动力学特征。同时培养法形成的混合菌丝球降解效果最好,7 d内对初始浓度为50 mg/L的2-氯酚降解率可达89%以上,降解速率常数为0.3286 mg/(L·d),2-氯酚半衰期t1/2为2.8 d。【结论】首次报道黄孢原毛平革菌包埋固定化光合细菌形成混合菌丝球。该研究为生物质固定化材料的实际应用提供理论依据。 相似文献
20.
Christelle Goanvec Michaë l Theron Elisabeth Poirier St phane Le Floch Jean Laroche Liliane Nonnotte Guy Nonnotte 《Biomarkers》2004,9(6):435-446
Flatfishes, turbots (Scophthalmus maximus), were injected intraperitoneally with two doses of fuel oil number 2. Biliary metabolites were evaluated by fixed fluorescence to verify the efficiency of intoxication. Ethoxyresorufin-O-deethylase (EROD) activity was compared with chromosomal damage measured by flow cytometry. The analysis of biliary metabolites showed a good dose-response relation and constitutes a clear reference for the subsequent measurements. Comparing flow cytometry and EROD results, a shorter delay of response for EROD activity was obtained, but chromosomal damage was significant only after 1 week. The persistence of the EROD response was shorter, while the genotoxic signal still persisted after 1 month. The measurement of chromosomal damage allowed a good differentiation between the two tested doses. In the case of EROD activity, the results were less clear. The results suggest that within a few weeks after exposure to fuel oil number 2, the measurements of chromosomal damage by flow cytometry can be used to detect a dose-dependant genotoxic response in fish. 相似文献