首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to learn whether modulation of steroid hormone receptor by arachidonate is generalized or not, the arachidonate effect was examined in cytosol estrogen (ER), progestin (PR), androgen (AR) and glucocorticoid receptors (GCR) from the central and peripheral tissues of rats by sucrose density gradient centrifugation, and gel filtration on LH20 columns or dextran-coated charcoal absorption. Arachidonate and other long-chain fatty acids appear to inhibit the specific binding of estrogen ([3H]R2858), progestin ([3H]R5020), androgen ([3H]R1881) and glucocorticoid ([3H]dexamethasone) to the respective receptors in brain (neonatal cerebral cortex and hypothalamus-preoptic area, HPOA), uterus and prostate, with the exception of the potentiating effect on the brain estrogen receptors. The potency of the unsaturated fatty acids paralleled to some degree the number of cis double bonds and carbon, in that oleate (C18:1) arachidonate (C20:4) docosahexaenoate (C22:6). The arachidonate inhibition was dose-dependent in the tissue steroid hormone receptors, except for dose-dependent potentiation of the brain cortical estrogen receptors. Inhibitory potency as expressed by the concentration for 50% maximum inhibition (Ki) was in the range of 11-18 microM for the receptors other than the uterine estrogen receptors with the value of 44 microM, suggesting lower sensitivity for the estrogen receptor to the arachidonate effect in the uterus. Analysis on kinetics and Scatchard plot revealed the non-competitive type of the inhibition. In addition, arachidonate lowered dose-dependently the peak of labelled progestin or estrogen binding to the 8S receptor proteins, which were collected from fractions in the 8S region of the cytosols from intact or diethylstibestrol-primed rat uteri. These results suggest the generalized modulatory effect of arachidonate on the steroid hormone receptors in the central and peripheral tissues. Arachidonate could affect, negatively or positively, the estrogen receptors, and negatively the progestin, androgen and glucocorticoid receptors, through a possibly direct but weak binding at sites different from steroid binding sites on the receptor molecules. A potential messenger role of arachidonate itself has been implicated in the regulation or modulation of the steroid hormone receptors.  相似文献   

2.
Alteration of androgen receptor function due to hormonally active compounds in the environment, may be responsible for impaired reproductive function in aquatic wildlife. Based on human prostate carcinoma 22RV1 cells, a cell culture expression system was established to test effects of putative androgenic/antiandrogenic compounds on endogenous gene expression. 22RV1 cells were shown to express human androgen receptor, but not human progestin (hPR) or human oestrogen receptor (hER) alpha and beta. Six androgen-regulated genes (ARGs) were chosen to determine androgenic/antiandrogenic action using highly sensitive real-time RT-PCR. Results showed that gene expression is altered in a time-dependent manner. After stimulation of cells by DHT (10nM), synthetic androgen R1881 (1 nM), or organic pesticides (difenoconazole, fentinacetate, tetramethrin) TMPRSS2 mRNA expression was down-regulated by the factor 0.6 after 24h of DHT treatment. Similar results were obtained when cells were assayed for mRNA expression of PSA after fentinacetate and R1881 stimulation. In contrast, TMPRSS2 expression was up-regulated by the factor 0.9 when cells were stimulated by tetramethrin. Final goal of the work is a sensitive determination of differential gene expression by different compounds under study, achievement of substance-specific expression patterns and function related analysis of potential androgens/antiandrogens.  相似文献   

3.
4.
Medroxyprogesterone acetate (MPA), a widely used synthetic steroid, was studied to determine both its effects on steroid receptors and steroidogenesis in the well-characterized rat ovarian granulosa cell model. Initial receptor binding studies showed MPA was as potent as progesterone and 10-fold less potent than R-5020 (an active synthetic progestin) in binding to progesterone cytosolic receptors in rat ovarian granulosa cells. MPA was 20-fold less potent than testosterone, and 10-fold less potent than dexamethasone in binding to the androgen and glucocorticoid cytosolic receptors, respectively. The binding of MPA to progestrone, androgen and glucocorticoid receptors predicted direct effects of MPA on FSH-stimulated estrogen (E), progesterone (P), and 20 alpha-dihydroprogesterone (DHP) production by cultured rat ovarian granulosa cells. MPA at 10(-7) to 10(-6) M significantly augmented FSH-stimulated P and DHP production (a previously documented progestin, androgen and glucocorticoid effect). This augmentation was blocked by the concurrent addition to cell culture of 10-fold excess RU-486 (a potent anti-progestin and anti-glucocorticoid). At concentrations greater than 10(-6) M, MPA inhibited the production of P and DHP (a progestin effect), and the production of E (a progestin and glucocorticoid effect). MPA, structurally a progestin, has complex steroid hormone effects predicted by its interaction with progesterone, androgen and glucocorticoid receptors.  相似文献   

5.
6.
The structural requirements for the interaction of about 80 cyclic hydrocarbons and related compounds with the androgen receptor of rat ventral prostate, the estrogen receptor of human breast tumor MCF-7 cells, and the glucocorticoid receptor of rat liver were examined by comparing their abilities to compete with radioactive hormones for binding to the respective receptors. The results indicate that the receptor-binding affinity of a compound is dependent on its electronic configuration and geometrical similarity to a portion of a natural steroid hormone which can be recognized by local ligand-binding sites in the receptor. For the estrogen receptor, beta-phenols are more active than the corresponding alpha-phenols, whereas nonphenolic compounds are totally inactive. For androgen and glucocorticoid receptors, alpha-phenols are more active than beta-phenols. The androgen receptor can interact stereospecifically with nonoxygenated and nonalkylated cyclic hydrocarbons, such as 10,11-dihydro-5H-dibenzo[a,d] cycloheptene or 9,10-dihydrophenanthrene, which can, in vivo, inhibit the androgen-dependent growth of the male accessory reproductive organs. The affinities of naphthalene, anthracene, phenanthrene, biphenyl, and adamantane toward glucocorticoid and androgen receptors can be enhanced by acetylation or ethanolization of these ligands. Our results also indicate that, while the hormonal action of a steroid may be dependent on the interaction of a functional group on the hormone with a specific group on the receptor, the presence of such a group may not be required for the antagonistic activity of a compound that can physically block hormone binding to the receptor. Thus, many small molecules that were hitherto considered to be biologically inert may interact with steroid receptors specifically and affect hormonal activities in vivo.  相似文献   

7.
8.
9.
Molecular regulation of androgen action in prostate cancer   总被引:1,自引:0,他引:1  
  相似文献   

10.
Abnormal differentiation in epithelial stem cells or their immediate proliferative progeny, the transiently amplifying population (TAP), may explain malignant pathogenesis in the human prostate. These models are of particular importance as differing sensitivities to androgen among epithelial cell subpopulations during differentiation are recognised and may account for progression to androgen independent prostate cancer. Androgens are crucial in driving terminal differentiation and their indirect effects via growth factors from adjacent androgen responsive stroma are becoming better characterised. However, direct effects of androgen on immature cells in the context of a prostate stem cell model have not been investigated in detail and are studied in this work. In alpha2beta1hi stem cell enriched basal cells, androgen analogue R1881 directly promoted differentiation by the induction of differentiation-specific markers CK18, androgen receptor (AR), PSA and PAP. Furthermore, treatment with androgen down-regulated alpha2beta1 integrin expression, which is implicated in the maintenance of the immature basal cell phenotype. The alpha2beta1hi cells were previously demonstrated to lack AR expression and the direct effects of androgen were confirmed by inhibition using the anti-androgen bicalutamide. AR protein expression in alpha2beta1hi cells became detectable when its degradation was repressed by the proteosomal inhibitor MG132. Stratifying the alpha2beta1hi cells into stem (CD133(+)) and transient amplifying population (TAP) (CD133(-)) subpopulations, AR mRNA expression was found to be restricted to the CD133(-) (TAP) cells. The presence of a functional AR in the TAP, an androgen independent subpopulation for survival, may have particular clinical significance in hormone resistant prostate cancer, where both the selection of immature cells and functioning AR regulated pathways are involved.  相似文献   

11.
12.
Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways.  相似文献   

13.
To assess the adverse toxicological effects of steroid hormones on western mosquitofish (Gambusia affinis), 180 adult females were exposed to individual or binary combinations of progesterone (1μg/L), testosterone (1μg/L) and 17β-estradiol (1μg/L) for eight days. The expression patterns of vitellogenin, estrogen receptor, androgen receptor, metallothionein, and cytochrome P450 1A genes in mosquitofish varied according to tissue as well as the specificity of steroids. Treatment by progesterone or testosterone alone inhibited target gene expression in the livers. The expression levels of both vitellogenin A and vitellogenin B mRNAs were up-regulated by17β-estradiol, and a parallel induction of estrogen receptor α mRNA expression was also observed in the livers. In addition, 17β-estradiol treatment alone suppressed androgen receptor α, metallothionein and cytochrome P450 1A mRNA expression in the livers. In general, multiple hormone treatments had different effects on target gene expression compared with corresponding hormone alone. The results demonstrate that steroid hormones cause multiple biological responses including the expression of vitellogenin, estrogen receptor and androgen receptor mRNA in the hormone signaling pathways and the expression of metallothionein and cytochrome P450 1A mRNA in the xenobiotic signaling pathway.  相似文献   

14.
A major focus in the current discovery of drugs targeting nuclear receptors (NRs) is identifying drugs with reduced side effects by improving selectivity, not only from other receptors but also by selective modulation of the NR of interest. Cellular assays not only provide valuable information on functional activity, potency, and selectivity but also are ideally suited for differentiating partial agonists and antagonists. The ability to partially activate a receptor is believed to be closely tied to the ability to selectively modulate the NR, resulting in expression of a subset of the normally regulated genes. To this end, the authors have built a complete panel of cell-based steroid hormone receptor assays for the androgen receptor, estrogen receptor alpha, estrogen receptor beta, glucocorticoid receptor, mineralocorticoid receptor, and progesterone receptor by stably engineering a Gal4 DNA-binding domain/nuclear receptor ligand-binding domain fusion protein into an upstream activation sequence beta-lactamase reporter cell line. Each assay was validated with known agonists and antagonists for correct pharmacology and high-throughput compatibility. To demonstrate the utility of these assays, the authors profiled 35 pharmacologically relevant compounds in a dose-response format against the panel in both agonist and antagonist modes. The results demonstrated that selective estrogen receptor modulators can be identified and differentiated, as well as mixed and partial agonists and antagonists easily detected in the appropriate assays. Importantly, a comparison of the chimeric assays with full-length reporter gene assay data from the literature shows a good degree of correlation in terms of selectivity and pharmacology of important ligands. Taken together, these steroid hormone receptor assays provide good selectivity, sensitivity, and appropriate pharmacology for high-throughput screening and selectivity profiling of modulators of steroid hormone receptors.  相似文献   

15.
16.
17.
18.
19.
Development and differentiation of the prostate from the fetal urogenital sinus (UGS) is dependent on androgen action via androgen receptors (AR) in the UGS mesenchyme. Estrogens are not required for prostate differentiation but do act to modulate androgen action. In mice exposure to exogenous estrogen during development results in permanent effects on adult prostate size and function, which is mediated through mesenchymal estrogen receptor (ER) alpha. For many years estrogens were thought to inhibit prostate growth because estrogenic drugs studied were administered at very high concentrations that interfered with normal prostate development. There is now extensive evidence that exposure to estrogen at very low concentrations during the early stages of prostate differentiation can stimulate fetal/neonatal prostate growth and lead to prostate disease in adulthood. Bisphenol A (BPA) is an environmental endocrine disrupting chemical that binds to both ER receptor subtypes as well as to AR. Interest in BPA has increased because of its prevalence in the environment and its detection in over 90% of people in the USA. In tissue culture of fetal mouse UGS mesenchymal cells, BPA and estradiol stimulated changes in the expression of several genes. We discuss here the potential involvement of estrogen in regulating signaling pathways affecting cellular functions relevant to steroid hormone signaling and metabolism and to inter- and intra-cellular communications that promote cell growth. The findings presented here provide additional evidence that BPA and the estrogenic drug ethinylestradiol disrupt prostate development in male mice at administered doses relevant to human exposures.  相似文献   

20.
The widely expressed steroid hydroxylase CYP7B1 is involved in metabolism of a number of steroids reported to influence estrogen and androgen signaling. Several studies by us and other investigators have linked this enzyme to effects on estrogen receptor activation. In a previous report we examined the effect of CYP7B1-mediated hormone metabolism for estrogen-mediated response in kidney-derived HEK293 cells. In the current study we used an androgen response element (ARE) reporter system to examine androgen-dependent response of some CYP7B1 substrates and CYP7B1-formed metabolites in several cell lines derived from different tissues. The results indicate significantly lower androgen receptor activation by CYP7B1-formed steroid metabolites than by the corresponding steroid substrates, suggesting that CYP7B1-mediated catalysis may decrease some androgenic responses. Thus, CYP7B1-dependent metabolism may be of importance not only for estrogenic signaling but also for androgenic. This finding, that CYP7B1 activity may be a regulator of androgenic signaling by converting AR ligands into less active metabolites, is also supported by real-time RT-PCR experiment where a CYP7B1 substrate, but not the corresponding product, was able to stimulate known androgen-sensitive genes. Furthermore, our data indicate that the effects of some steroids on hormone response element reporter systems are cell line-specific. For instance, despite transfection of the same reporter systems, 5-androstene-3β,17β-diol strongly activates an androgen-dependent response element in prostate cancer cells whereas it elicits only ER-dependent responses in kidney HEK293 cells. Potential roles of cell-specific metabolism or comodulator expression for the observed differences are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号