首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The glycopeptide antibiotic vancomycin blocks cell wall synthesis in Escherichia coli only when it can reach its target site in the periplasm. In vivo, sensitivity to vancomycin is enhanced in the presence of the hemolysin (hly) determinant of E. coli or its translocator portion hlyBD. Two different mutations in hlyD alter the cell's susceptibility to vancomycin: mutations in the tolC-homologous region of hlyD increase vancomycin resistance, whereas mutations at the 3′-terminus of hlyD lead to hypersensitivity to vancomycin and to the accumulation of large periplasmic and cytoplasmic pools of this antibiotic in E. coli. These effects are only observed in the presence of functional HlyB and TolC, the two other components of the hemolysin secretion machinery. A defect in TolC causes hyperresistance to vancomycin, even when present together with a mutant HlyD protein which in the presence of TolC renders E. coli hypersensitive to vancomycin. Lipid bilayer experiments in vitro revealed specific interactions between TolC and vancomycin or HlyD protein. Second-site suppressor mutations in hlyD and hlyB were obtained, which abolish the hypersensitive phenotype caused by the 3′-terminal mutations in hlyD. Our results are compatible with the idea that (a) TolC, together with the TolC-homologous part of HlyD, forms a pore in the outer membrane through which hemolysin is released and vancomycin taken up; and (b) the C-terminal sequence of HlyD interacts with periplasmic loop(s) of HlyB to form a closed channel spanning the periplasm. Received: 7 April 1997 / Accepted: 28 May 1997  相似文献   

2.
Escherichia coli was used as a model to study initial adhesion and early biofilm development to abiotic surface. Tn10 insertion mutants of Escherichia coli K-12 W3110 were selected for altered abilities to adhere to a polystyrene surface. Seven insertion mutants that showed a decrease in adhesion harbored insertions in genes involved in lipopolysaccharide (LPS) core biosynthesis. Two insertions were located in the rfaG gene, two in the rfaP gene, and three in the galU gene. These adhesion mutants were found to exhibit a deep-rough phenotype and to be reduced, at different levels, in type 1 fimbriae production and motility. The loss of adhesion exhibited by these mutants was associated with either the affected type 1 fimbriae production and/or the dysfunctional motility. Apart from the pleiotropic effect of the mutations affecting LPS on type 1 fimbriae and flagella biosynthesis, no evidence for an involvement of the LPS itself in adhesion to polystyrene surface could be observed. Received: 1 December 1998 / Accepted: 3 April 1999  相似文献   

3.
The 1706-residue adenylate cyclase toxin (CyaA) of Bordetella pertussis is an RTX protein with extensive carboxy-proximai glycine and aspartate-rich repeats. CyaA does not have a cleavable amino-terminal signal peptide and can be secreted across both bacterial membranes of the Escherichia coli cell envelope by the α-haemolysin (HlyA) translocator (HlyBD/TolC). We performed deletion mapping of secretion signals recognized in CyaA by this heterologous translocator. Truncated proteins with N–terminal and internal deletions were secreted at levels up to 10 times higher than intact CyaA and similar to HlyA. A secretion signal recognized by HlyBD/ToiC was found within the last 74 residues of CyaA. However, secretion of CyaA was reduced but not abolished upon deletion of the last 75 or 217 residues, indicating that at least two additional secretion signals recognized by HlyBD/TolC are within CyaA. One of them was localized to the repeat sequence between residues Asp-1587 to lle-1631. Interestingly, a conserved acidic' motif (Glu/Asp)-(X)11-Asp-(X)3/5-(Glu/Asp)-(X)14-Asp was found in the C-terminal sequences of HlyA, CyaA and the two secreted CyaA derivatives. We speculate that the presence and spacing of acidic residues may be an important feature of secretion signals recognized by the haemolysin translocator.  相似文献   

4.
The glycopeptide antibiotic vancomycin blocks cell wall synthesis in Escherichia coli only when it can reach its target site in the periplasm. In vivo, sensitivity to vancomycin is enhanced in the presence of the hemolysin (hly) determinant of E. coli or its translocator portion hlyBD. Two different mutations in hlyD alter the cell's susceptibility to vancomycin: mutations in the tolC-homologous region of hlyD increase vancomycin resistance, whereas mutations at the 3′-terminus of hlyD lead to hypersensitivity to vancomycin and to the accumulation of large periplasmic and cytoplasmic pools of this antibiotic in E. coli. These effects are only observed in the presence of functional HlyB and TolC, the two other components of the hemolysin secretion machinery. A defect in TolC causes hyperresistance to vancomycin, even when present together with a mutant HlyD protein which in the presence of TolC renders E. coli hypersensitive to vancomycin. Lipid bilayer experiments in vitro revealed specific interactions between TolC and vancomycin or HlyD protein. Second-site suppressor mutations in hlyD and hlyB were obtained, which abolish the hypersensitive phenotype caused by the 3′-terminal mutations in hlyD. Our results are compatible with the idea that (a) TolC, together with the TolC-homologous part of HlyD, forms a pore in the outer membrane through which hemolysin is released and vancomycin taken up; and (b) the C-terminal sequence of HlyD interacts with periplasmic loop(s) of HlyB to form a closed channel spanning the periplasm.  相似文献   

5.
Cyanobacteria were the first organisms ever to perform oxygenic photosynthesis and still significantly contribute to primary production on a global scale. To assure the proper functioning of their primary metabolism and cell homeostasis, cyanobacteria must rely on efficient transport systems to cross their multilayered cell envelope. However, cyanobacterial secretion mechanisms remain largely unknown. Here, we report on the identification of 11 putative inner membrane translocase components of TolC‐mediated secretion in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Gene‐inactivation of each of the candidate genes followed by a comprehensive phenotypic characterization allowed to link specific protein components to the processes of protein export (as part of the type I secretion system) and drug efflux (part of the resistance‐division‐nodulation efflux pumps). In addition, mutants in genes sll0141, sll0180 and slr0369 exhibited alterations in pilin glycosylation, but pili structures could still be observed by transmission electron microscopy. By studying the release of outer membrane vesicles (OMVs), an alternative secretion route, on mutants with impaired secretory functions we suggest that the hyper‐vesiculating phenotype of the TolC‐deficient mutant is related to cell envelope stress management. Altogether, these findings highlight how both classical (TolC‐mediated) and nonclassical (OMVs‐mediated) secretion systems are crucial for cyanobacterial cell homeostasis.  相似文献   

6.
TolC channel provides a route for the expelled drugs and toxins to cross the outer membrane of Escherichia coli. The puzzling feature of TolC structure is that the periplasmic entrance of the channel is closed by dense packing of 12 α‐helices. Efflux pumps exemplified by AcrAB are proposed to drive the opening of TolC channel. How interactions with AcrAB promote the close‐to‐open transition in TolC remains unclear. In this study, we investigated in vivo the functional and physical interactions of AcrAB with the closed TolC and its conformer opened by mutations in the periplasmic entrance. We found that the two conformers of TolC are readily distinguishable in vivo by characteristic drug susceptibility, thiol modification and proteolytic profiles. However, these profiles of TolC variants respond neither to the in vivo stoichiometry of AcrAB:TolC nor to the presence of vancomycin, which is used often to assess the permeability of TolC channel. We further found that the activity and assembly of AcrAB–TolC tolerates significant changes in amounts of TolC and that only a small fraction of intracellular TolC is likely used to support efflux needs of E. coli. Our findings explain why TolC is not a good target for inhibition of multidrug efflux.  相似文献   

7.
The ability of Salmonella to invade tissue culture cells is correlated with virulence. Therefore, the tissue culture invasion model has been used extensively to study this process and to identify the bacterial genes involved and their products. Described here is the further characterization of a Salmonella enteritidis mutant (SM6T) originally identified as non-invasive for tissue culture cells. A chromosomal DNA fragment complementing this defect was cloned and sequenced. The derived protein sequence is 89% identical to TolC from Escherichia coli , an outer membrane protein required for the signal peptide-independent transport of α-haemolysin and colicin V. Therefore, sinA was renamed tolC and is referred to in this text as tolC s to distinguish it from tolC of E. coli TolCs and TolC are functionally similar since tolC can complement the invasion-defective phenotype of a tolCs mutant, and tolCs is required for export of α-haemolysin by Salmonella . The tolC s mutant is avirulent for mice when administered by the oral route, suggesting that the gene is important for virulence. Further characterization of the tolCs mutant indicated that like tolC mutants it is more sensitive than the wild-type strain to various detergents, antibiotics and dyes. This mutant is more sensitive to Triton X-100 only when associated with the monolayer, and the invasion-defective phenotype appears to be an artifact of this sensitivity. In addition, the tolCs mutant is more sensitive to the bactericidal activity of human serum. Therefore, the avirulent phenotype could be the result of an inability to secrete a necessary virulence factor, or an increased sensitivity to complement and detergents as a result of a subtle alteration in the lipopolysaccharide (LPS) associated with tolC mutations.  相似文献   

8.
Two mutants of Salmonella typhimurium LT2, which were temperature-sensitive for lipopolysaccharide (LPS) synthesis, were isolated from a galE - strain based on their resistance to phage C21 and sensitivity to sodium deoxycholate at 42°C. They produced LPS of chemotype Rc at 30°C and deep-rough LPS at 42°C. P22-mediated transductional analysis showed that the mutations responsible for temperature sensitivity are located in the rfa cluster where several genes involved in the synthesis of the LPS core are mapped. A plasmid, carrying rfaC, D and F genes of Escherichia coli K-12, complemented these mutations. These genes are responsible for the synthesis of the inner-core region of the LPS molecule. This indicates that genetic defects in these temperature-sensitive mutants affect the inner-core region of LPS.  相似文献   

9.
The antibacterial peptide toxin colicin V (ColV) uses a dedicated signal sequence-independent export system for its secretion in Escherichia coli that involves the products of three genes, cvaA, cvaB, and tolC in this process. As a member of the membrane fusion protein (MFP) family, the CvaA protein has been proposed to interact with an outer membrane protein TolC via its C-terminal hydrophobic domain. The importance of this domain, which is highly conserved throughout the members of MFP family, was analyzed by use of site-directed mutagenesis of missense or nonsense mutations with suppressors. All the nonsense mutations tested resulted in the loss of ColV secretion, indicating the importance of the C-terminus of CvaA, including the last 100 residue–hydrophilic domain. The missense mutations of several conserved amino acids have no drastic effects. On the other hand, when Glu-248, Ala-262, Thr-274, Leu-285, Gly-313, Ala-322, or Val-335 of CvaA protein was mutated, the secretion of ColV was greatly reduced in certain mutants. While some mutations resulted in structural instability, Glu-248 to Lys and Ala-322 to Gly proteins were relatively stable, but were not functional in ColV secretion. The results indicate that these conserved amino acids are important for the structure and functions of CvaA in the secretion of ColV. Received: 6 February 1999 / Accepted: 26 June 1999  相似文献   

10.
The outer membrane channel TolC is a key component of multidrug efflux and type I secretion transporters in Escherichia coli. Mutational inactivation of TolC renders cells highly susceptible to antibiotics and leads to defects in secretion of protein toxins. Despite impairment of various transport functions, no growth defects were reported in cells lacking TolC. Unexpectedly, we found that the loss of TolC notably impairs cell division and growth in minimal glucose medium. The TolC‐dependent phenotype was further exacerbated by the loss of ygiB and ygiC genes expressed in the same operon as tolC and their homologues yjfM and yjfC located elsewhere on the chromosome. Our results show that this growth deficiency is caused by depletion of the critical metabolite NAD+ and high NADH/NAD+ ratios. The increased amounts of PspA and decreased rates of NADH oxidation in ΔtolC membranes indicated stress on the membrane and dissipation of a proton motive force. We conclude that inactivation of TolC triggers metabolic shutdown in E. coli cells grown in minimal glucose medium. The ΔtolC phenotype is partially rescued by YgiBC and YjfMC, which have parallel functions independent from TolC.  相似文献   

11.
Summary Spontaneous mutants of Escherichia coli K12 displaying an increased level of the kanamycin resistance conferred by plasmid pGR71 were selected. Several mutants obtained in this way apparently carry large chromosomal deletions extending into galU and/or bglY (27 min). This positive selection of deletions allowed detection of a new locus located between galU and bglY. Deletions of this locus are responsible for increased resistance to kanamycin (Irk), decreased resistance to l-serine in minimal medium (Drs) and decreased resistance to chloramphenicol (Drc) when a cat gene is present in the bacteria.  相似文献   

12.
The AcrAB-TolC multidrug efflux pump confers resistance to Escherichia coli against many antibiotics and toxic compounds. The TolC protein is an outer membrane factor that participates in the formation of type I secretion systems. The genome of Vibrio vulnificus encodes two proteins homologous to the E. coli TolC, designated TolCV1 and TolCV2. Here, we show that both TolCV1 and TolCV2 partially complement the E. coli TolC function and physically interact with the membrane fusion protein AcrA, a component of the E. coli AcrAB-TolC efflux pump. Using site-directed mutational analyses and an in vivo cross-linking assay, we demonstrated that the α-barrel tip region of TolC homologs plays a critical role in the formation of functional AcrAB-TolC efflux pumps. Our findings suggest the adapter bridging model as a general assembly mechanism for tripartite drug efflux pumps in Gram-negative bacteria.  相似文献   

13.
We have carried out a genetic analysis of Escherichia coli HlyB using in vitro(hydroxylamine) mutagenesis and regionally directed mutagenesis. From random mutagenesis, three mutants, temperature sensitive (Ts) for secretion, were isolated and the DNA sequenced: Glyl0Arg close to the N-terminus, Gly408Asp in a highly conserved small periplasmic loop region PIV, and Pro624Leu in another highly conserved region, within the ATP-binding region. Despite the Ts character of the Gly10 substitution, a derivative of HlyB, in which the first 25 amino acids were replaced by 21 amino acids of the Cro protein, was still active in secretion of HlyA. This indicates that this region of HlyB is dispensable for function. Interestingly, the Gly408Asp substitution was toxic at high temperature and this is the first reported example of a conditional lethal mutation in HlyB. We have isolated 4 additional mutations in PIV by directed mutagenesis, giving a total of 5 out of 12 residues substituted in this region, with 4 mutations rendering HlyB defective in secretion. The Pro624 mutation, close to the Walker B-site for ATP binding in the cytoplasmic domain is identical to a mutation in HisP that leads to uncoupling of ATP hydrolysis from the transport of histidine. The expression of a fully functional haemolysin translocation system comprising HlyC,A,B and D increases the sensitivity of E. coli to vancomycin 2.5-fold, compared with cells expressing HlyB and HlyD alone. Thus, active translocation of HlyA renders the cells hyperpermeable to the drug. Mutations in hlyB affecting secretion could be assigned to two classes: those that restore the level of vancomycin resistance to that of E. coli not secreting HlyA and those that still confer hypersensitivity to the drug in the presence of HlyA. We propose that mutations that promote vancomycin resistance will include mutations affecting initial recognition of the secretion signal and therefore activation of a functional transport channel. Mutations that do not alter HlyA-dependent vancomycin sensitivity may, in contrast, affect later steps in the transport process.  相似文献   

14.
When Legionella pneumophila grows on agar plates, it secretes a surfactant that promotes flagellum- and pilus-independent "sliding" motility. We isolated three mutants that were defective for surfactant. The first two had mutations in genes predicted to encode cytoplasmic enzymes involved in lipid metabolism. These genes mapped to two adjacent operons that we designated bbcABCDEF and bbcGHIJK. Backcrossing and complementation confirmed the importance of the bbc genes and suggested that the Legionella surfactant is lipid containing. The third mutant had an insertion in tolC. TolC is the outer membrane part of various trimolecular complexes involved in multidrug efflux and type I protein secretion. Complementation of the tolC mutant restored sliding motility. Mutants defective for an inner membrane partner of TolC also lacked a surfactant, confirming that TolC promotes surfactant secretion. L. pneumophila (lspF) mutants lacking type II protein secretion (T2S) are also impaired for a surfactant. When the tolC and lspF mutants were grown next to each other, the lsp mutant secreted surfactant, suggesting that TolC and T2S conjoin to mediate surfactant secretion, with one being the conduit for surfactant export and the other the exporter of a molecule that is required for induction or maturation of surfactant synthesis/secretion. Although the surfactant was not required for the extracellular growth, intracellular infection, and intrapulmonary survival of L. pneumophila, it exhibited antimicrobial activity toward seven other species of Legionella but not toward various non-Legionella species. These data suggest that the surfactant provides L. pneumophila with a selective advantage over other legionellae in the natural environment.  相似文献   

15.
Cloning of the rfb genes of Shigella flexneri 2a into Escherichia coli K-12 strain DH1 results in the synthesis of lipopolysaccharides (LPS) with an O-antigen chain having type antigen IV and group antigens 3,4. During genetic studies of these rfb genes in E. coli K-12, we observed that strains harbouring plasmids with certain mutations (inversion and transposon insertions) which should have blocked O-antigen synthesis nevertheless still produced LPS with O-antigen chains. These LPS migrated differently on silver-stained SDS—polyacrylamide gels, compared with the LPS produced by wild-type rfb genes, and the group 3,4 antigens were barely detectable, suggesting that the O-antigen was altered. Investigation of the genetic determinants for production of the altered O-antigen/LPS indicated that: (i) these LPS are produced as a result of mutations which are either polar on rfbF or inactivate rfbF; (ii) the rfbX gene product (or a similar protein in the E. coli K-12 rfb region) is needed for production of the altered O-antigen in the form of LPS; (iii) the rfbG gene product is required for the production of both the parental and altered LPS; (iv) the dTDP-rhamnose biosynthesis genes are required. Additionally, an E. coli K-12 gene product(s) encoded outside the rfb region also contributes to production of the O-antigen of the altered LPS. An antiserum raised to the altered LPS from strain DH1(pPM2217 (rfbX::Tn1725)) was found to cross-react with nearly all S. flexneri serotypes, and with the altered LPS produced by other DH1 strains harbouring plasmids with different rfb mutations, as described above. The reactivity of the altered LPS with a panel of monoclonal antibodies specific for various S. flexneri O-antigen type and group antigens demonstrated that their O-antigen components were closely related to that of S. flexneri serotype 4. The RfbF and RfbG proteins were shown to have similarity to rhamnose transferases, and we identified a motif common to the N-termini of 6-deoxy-hexose nucleotide sugar transferases. We propose that the E. coli K-12 strains harbouring the mutated S. flexneri rfb genes produce LPS with a hybrid O-antigen as a consequence of inactivation of RfbF and complementation by an E. coli K-12 gene product. Analysis of the genetic and immunochemical data suggested a possible structure for the O-antigen component of the altered LPS.  相似文献   

16.
The Pseudomonas aeruginosa A-band lipopolysaccharide (LPS) molecule has an O-polysaccharide region composed of trisaccharide repeat units of α1 → 2, α1 → 3, α1 → 3 linked D -rhamnose (Rha). The A-band polysaccharide is assembled by the α-D -rhamnosyltransferases, WbpX, WbpY and WbpZ. WbpZ probably transfers the first Rha residue onto the A-band accepting molecule, while WbpY and WbpX subsequently transfer two α1 → 3 linked Rha residues and one α1 → 2 linked Rha respectively. The last two transferases are predicted to be processive, alternating in their activities to complete the A-band polymer. The genes coding for these transferases were identified at the 3′ end of the A-band biosynthetic cluster. Two additional genes, psecoA and uvrD, border the 3′ end of the cluster and are predicted to encode a co-enzyme A transferase and a DNA helicase II enzyme respectively. Chromosomal wbpX, wbpY and wbpZ mutants were generated, and Western immunoblot analysis demonstrates that these mutants are unable to synthesize A-band LPS, while B-band synthesis is unaffected. WbpL, a transferase encoded within the B-band biosynthetic cluster, was previously proposed to initiate B-band biosynthesis through the addition of Fuc2NAc (2-acetamido-2,6-dideoxy-D -galactose) to undecaprenol phosphate (Und-P). In this study, chromosomal wbpL mutants were generated that did not express A band or B band, indicating that WbpL initiates the synthesis of both LPS molecules. Cross-complementation experiments using WbpL and its homologue, Escherichia coli WecA, demonstrates that WbpL is bifunctional, initiating B-band synthesis with a Fuc2NAc residue and A-band synthesis with either a GlcNAc (N-acetylglucosamine) or GalNAc (N-acetylgalactosamine) residue. These data indicate that A-band polysaccharide assembly requires four glycosyltransferases, one of which is necessary for initiating both A-band and B-band LPS synthesis.  相似文献   

17.
Mutation of the capR(lon), capS, or capT genes in Escherichia coli K-12 causes overproduction of capsular polysaccharide leading to a mucoid phenotype. Several of the enzymes involved in capsular polysaccharide synthesis are derepressed in cap mutants. Previously it was shown that uridine diphosphate-glucose (UDPG) pyrophosphorylase, an enzyme involved in the synthesis of three of the nucleotide sugar precursors of the capsule, is derepressed in capR mutants. The control of galU, the gene which codes for UDPG pyrophosphorylase, is described in this study. In addition, it has been found that the enzyme is also derepressed in capS and capT mutants. The effect of galU gene dosage in cap mutants and the wild-type strain (all lysogenic for 80) was studied by infecting them with the purified transducing phage 80dgalU. The level of UDPG pyrophosphorylase increased in proportion to the number of galU copies added. The rate of enzyme synthesis in the mutants was about sixfold higher than in the wild type per galU gene added for multiplicities of infection from one to twenty. Thus, all the galU copies added to the wild-type lysogen were repressed. We obtain greater than 20 galU copies per cell by infecting the nonlysogenic strain which allows multiplication of 80dgalU. With some number of galU copies greater than 20, the rate of UDPG pyrophosphorylase synthesis in the wild type approaches the mutant rate of synthesis. The results suggest that there may indeed be a galU repressor pool in the cell which can be completely titrated. This pool must be composed of more than 20 galU repressor molecules. Since the capR, capS, and capT gene products or combinations thereof are known to control other widely separated operons of the cell besides the galU gene, it is postulated that the galU repressor may be capable of binding other operators. This would account for the relatively large pool of galU repressors per cell.  相似文献   

18.
19.
Summary A group of ompA mutants of Escherichia coli K12 are described which were sensitive to bacteriophage K3 in a background wild-type for lipopolysaccharide (LPS). With mutant LPS in vivo (lacking some core sugar residues), however, the ompA mutations gave resistance to K3. Outer membrane levels of OmpA protein were normal or near-normal when the mutations resided in either wild-type or mutant LPS backgrounds. Strains in which the mutations occurred in a wild-type LPS background adsorbed K3 phage at the same initial rate and to the same extent as a wild-type strain, but the efficiency of plaquing of the adsorbed K3 was reduced to 25–50% of wild-type levels. Under conditions where a wild-type strain irreversibly adsorbed over 90% of available phage K3 within 3 min, double mutants (ompA mutant, LPS mutant) left 90% of the phage viable after 1h. The 10% of inactivated phage did not form plaques.  相似文献   

20.
HlyD has a single transmembrane domain (residues 59-80) and a large periplasmic domain, and is essential for the secretion of haemolysin from Escherichia coli. Using an antibody raised against HlyD, the protein was localised to the cell envelope by immunofluorescence and to the cytoplasmic membrane by sucrose gradient analysis. We have examined the stability of this protein in the presence and absence of other putative components of the translocator, HlyB and TolC. HlyD is normally highly stable but in the absence of TolC, the steady-state level of HlyD is greatly reduced and the protein has a half-life at 37° C of 36 min. In the absence of HlyB, HlyD is also unstable and specific degradation products are detected, which co-fractionate with the inner membrane, indicating in this case limited cleavage at specific sites. However, the effect of removing both HlyB and TolC is not additive. On the contrary, in the absence of both HlyB and TolC the half-life of HlyD is approximately 110 min. This result shows that in the presence of HlyB removal of TolC renders HlyD more unstable than it is in the absence of both HlyB and TolC. This suggests that the presence of HlyB induces a structural change in HlyD. In addition, HlyB itself appears to be less stable in the absence of HlyD. These results are consistent with an interaction between HlyD/TolC and HlyB/HlyD. A derivative of HlyD, HlyD22, lacking the 40 N-terminal residues of HlyD assembles into the inner membrane displaying the same stability with and without HlyB as wild type HlyD does. This N-terminal region therefore appears to play no role in stable localisation but is involved in secretion, since HlyD22 is completely secretion defective. Modification of the C-terminus on the other hand completely destabilised the molecule and HlyD was not detectable in the envelope. Secretion of active haemolysin is limited to a brief period during mid to late exponential phase. In contrast, HlyD is apparently synthesised constitutively throughout the growth phase, demonstrating that the production of this component of the translocator is not the limiting factor for growth phase-dependent secretion. Received: 10 July 1998 / Accepted: 19 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号