首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metformin is an anti-diabetic drug commonly used to treat cycle disorders and anovulation in women with polycystic ovary syndrome. However, the effects and molecular mechanism of metformin in the ovary are not entirely understood. We investigated the effects of this drug on steroidogenesis and proliferation in rat granulosa cells. Metformin (10 mM) treatment for 48 h reduced progesterone and estradiol (E2) production in both basal conditions and under FSH stimulation. It also decreased the levels of the HSD3B, CYP11A1, STAR, and CYP19A1 proteins in response to FSH (10(-8) M) and of HSD3B in the basal state only. Metformin treatment (10 mM, 24 h) also reduced cell proliferation and the levels of CCND2 and CCNE proteins without affecting cell viability, both in the basal state and in response to FSH. Furthermore, metformin treatment for 1 h simultaneously increased the Thr172 phosphorylation of PRKAA (adenosine 5' monophosphate-activated protein kinase alpha) and the Ser79 phosphorylation of ACACA (acetyl-Coenzyme A carboxylase alpha). The adenovirus-mediated production of dominant-negative PRKAA totally abolished the effects of metformin on progesterone secretion, HSD3B and STAR protein production, and MAPK3/1 phosphorylation. Conversely, total inhibition of PRKAA Thr172 phosphorylation with the dominant-negative PRKAA adenovirus did not restore the decrease in E2 production and cell proliferation induced by metformin. Our results therefore strongly suggest that metformin reduces progesterone production via a PRKAA-dependent mechanism, whereas PRKAA activation is not essential for the decrease in E2 production and cell growth induced by metformin in rat granulosa cells.  相似文献   

2.
Metformin is an insulin sensitizer molecule used for the treatment of infertility in women with polycystic ovary syndrome and insulin resistance. It modulates the reproductive axis, affecting the release of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH). However, metformin's mechanism of action in pituitary gonadotropin-secreting cells remains unclear. Adenosine 5' monophosphate-activated protein kinase (PRKA) is involved in metformin action in various cell types. Here, we investigated the effects of metformin on gonadotropin secretion in response to activin and GnRH in primary rat pituitary cells (PRP), and studied PRKA in rat pituitary. In PRP, metformin (10 mM) reduced LH and follicle-stimulating hormone (FSH) secretion induced by GnRH (10(-8) M, 3 h), FSH secretion, and mRNA FSHbeta subunit expression induced by activin (10(-8) M, 12 or 24 h). The different subunits of PRKA are expressed in pituitary. In particular, PRKAA1 is detected mainly in gonadotrophs and thyrotrophs, is less abundant in lactotrophs and somatotrophs, and is undetectable in corticotrophs. In PRP, metformin increased phosphorylation of both PRKA and acetyl-CoA carboxylase. Metformin decreased activin-induced SMAD2 phosphorylation and GnRH-induced mitogen-activated protein kinase (MAPK) 3/1 (ERK1/2) phosphorylation. The PRKA inhibitor compound C abolished the effects of metformin on gonadotropin release induced by GnRH and on FSH secretion and Fshb mRNA induced by activin. The adenovirus-mediated production of dominant negative PRKA abolished the effects of metformin on the FSHbeta subunit mRNA and SMAD2 phosphorylation induced by activin and on the MAPK3/1 phosphorylation induced by GnRH. Thus, in rat pituitary cells, metformin decreases gonadotropin secretion and MAPK3/1 phosphorylation induced by GnRH and FSH release, FSHbeta subunit expression, and SMAD2 phosphorylation induced by activin through PRKA activation.  相似文献   

3.
4.
A highly purified adenosine 3′,5′-monophosphate-dependent protein kinase from bovine brain has been found to catalyze its own phosphorylation. The incorporated phosphate was shown to be associated with the cyclic AMP-binding subunit (R-protein) of the protein kinase. The catalytic subunit exhibited no detectable incorporation of phosphate into itself, but was required for the phosphorylation of R-protein. The molecular weight of R-protein was determined by polyacrylamide gel electrophoresis to be about 48,000 in the presence of sodium dodecyl sulfate. Cyclic AMP strikingly inhibited the rate of autophosphorylation observed in the presence of ZnCl2, CaCl2, NiCl2, or FeCl2, but had no significant effect in the presence of MgCl2 or CoCl2. The concentration of cyclic AMP required to give half-maximal inhibition of phosphorylation was 3 × 10?7m in the presence of either CaCl2 or ZnCl2. Guanosine 3′,5′-monophosphate was far less effective under the same experimental conditions than cyclic AMP. R-protein appears to be similar to a phosphoprotein recently discovered in synaptic membrane fractions from rat and bovine cerebral cortex.  相似文献   

5.
6.
7.
8.
9.
The data presented with the isolated adrenal cells, in the present study, show that adrenocorticotropin in the physiological concentration range stimulates the synthesis of guanosine 3':5'-monophosphate(cyclic GMP), protein kinase activity, and steroidogenesis in a concentration-dependent manner without detectable rise in the levels of adenosine 3':5'-monophosphate (cyclic AMP). Millimolar concentrations of cyclic AMP and cyclic GMP, which stimulate corticosterone synthesis, also activate kinase activity and steroidogenesis in a sigmoid concentration-response manner. The process of phosphorylation activated by corticotropin, cyclic AMP and cyclic GMP is not inhibited by cycloheximide or actinomyin D. It is therefore proposed that the hormonal responses mediated by cyclic GMP and cyclic AMP are via the protein kinase enzymatic steps, and the inhibitory effect of cycloheximide and actinomycin D in corticotropin-stimulated steroidogenesis follows this step. In conjuction with our previous observations that the biosynthetic steps from (20S)-20-hydroxycholesterol to corticosterone are neither inhibited by cycloheximide nor affected by cyclic GMP, it is inferred that the rate-limiting step of adrenal steroidogenesis is the transformation of cholesterol to (20S)-20hydroxycholesterol and this very step is regulated by cyclic GMP and cyclic AMP. Of further significance are the findings that micromolar cincentrations of cyclic AMP and cyclic GMP, which do not stimulate steroidogenesis, effectively stimulate protein kinase activity in a concentration-dependent manner. It is therefore concluded that all cyclic-nucleotide-dependent protein kinase activities of the cell are not necessarily related to steroidogenesis.  相似文献   

10.
11.
The adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase purified from bovine cardiac muscle catalyzes the transfer of up to 2 mol of 32P from [lambda-32P]ATP to seryl residues in its cyclic nucleotide-binding protein component (Erlichman, J., Rosenfeld, R., and Rosen, O. M. (1974) J. Biol. Chem. 249, 5000-5003). We now present three lines of evidence to support our conclusions that the undissociated holoenzyme does not catalyze the phosphorylation of exogenous substrates but can undergo self-phosphorylation by an intramolecular reaction: (a) addition of either cAMP-binding protein or the protein kinase inhibitor (Walsh, D. A., Ashby C. D., Gonzales, C., Calkins, D., Fischer, E. H., and Krebs, D. G. (1971) J. Biol. Chem. 241, 1977-1985) does not inhibit self-phosphorylation as it does phosphorylation of exogenous substrates in the presence or absence of cAMP; (b) addition of catalytic subunit to an excess of cyclic nucleotide-binding protein results in phosphorylation equivalent to the amount of holoenzyme so generated; (c) the rate of self-phosphorylation is not affected by dilution of the holoenzyme.  相似文献   

12.
13.
The functional domains of the regulatory subunit of isozyme II of cAMP-dependent protein kinase were studied. It was shown using Edman degradation that the regulatory subunit contained a phosphorylated residue which was very close in primary sequence to the site most sensitive to hydrolysis by low trypsin concentrations as postulated previously (Corbin, J.D., Sugden, P.H., West, L., Flockhart, D.A., Lincoln, T.M., and McCarthy, D. (1978) J. Biol. Chem. 253, 3997-4003). Catalytic subunit incorporated 0.9 mol of 32P from [gamma-32P]ATP into a preparation of regulatory subunit that contained 1.1 mol of endogenous phosphate. After phosphorylation by the catalytic subunit, the regulatory subunit contained 2.2 mol of chemical phosphate. The effects of heat denaturation upon the rate and extent of phosphorylation of the regulatory subunit were compared with the effects of these treatments upon the cAMP binding and inhibitory domains. These data suggested that the regulatory subunit required factors in addition to an intact phosphorylatable primary sequence in order for inhibitory activity to be expressed. Such factors might be part of the secondary or tertiary structure of the protein. These studies are discussed with respect to the mechanism of inhibition of catalytic activity, and a model of the regulatory subunit structure is proposed.  相似文献   

14.
In rabbit heart homogenates about 50% of the cAMP-dependent protein kinase activity was associated with the low speed particulate fraction. In homogenates of rat or beef heart this fraction represented approximately 30% of the activity. The percentage of the enzyme in the particulate fraction was not appreciably affected either by preparing more dilute homogenates or by aging homogenates for up to 2 h before centrifugation. The particulate enzyme was not solubilized at physiological ionic strength or by the presence of exogenous proteins during homogenization. However, the holoenzyme or regulatory subunit could be solubilized either by Triton X-100, high pH, or trypsin treatment. In hearts of all species studied, the particulate-bound protein kinase was mainly or entirely the type II isozyme, suggesting isozyme compartmentalization. In rabbit hearts perfused in the absence of hormones and homogenized in the presence of 0.25 M NaCl, at least 50% of the cAMP in homogenates was associated with the particulate fraction. Omitting NaCl reduced the amount of particulate-bound cAMP. Most of the particulate-bound cAMP was probably associated with the regulatory subunit in this fraction since approximately 70% of the bound nucleotide was solubilized by addition of homogeneous catalytic subunit to the particulate fraction. The amount of cAMP in the particulate fraction (0.16 nmol/g of tissue) was approximately one-half the amount of the regulatory subunit monomer (0.31 nmol/g of tissue) in this fraction. The calculated amount of catalytic subunit in the particulate fraction was 0.18 nmol/g of tissue. Either epinephrine alone or epinephrine plus 1-methyl-3-isobutylxanthine increased the cAMP content of the particulate and supernatant fractions. The cAMP level was increased more in the supernatant fraction, possibly because the cAMP level became saturating for the regulatory subunit in the particulate fraction. The increase in cAMP was associated with translocation of a large percentage of the catalytic subunit activity from the particulate to the supernatant fraction. The distribution of the regulatory subunit of the enzyme was not significantly affected by this treatment. The catalytic subunit translocation could be mimicked by addition of cAMP to homogenates before centrifugation. The data suggest that the regulatory subunit of the protein kinase, at least that of isozyme II, is bound to particulate material, and theactive catalytic subunit is released by formation of the regulatory subunit-cAMP complex when the tissue cAMP concentration is elevated. A model for compartmentalized hormonal control is presented.  相似文献   

15.
16.
17.
We have studied the effects of adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase on the phosphorylative and functional modification of bovine adrenal tyrosine hydroxylase. Incubation of partially purified tyrosine hydroxylase with cAMP-dependent protein kinase in the presence of [gamma32P]ATP and 5 micron cAMP led to a 3- to 5-fold activation of tyrosine hydroxylase and to incorporation of [32P]phosphate into protein. When tyrosine hydroxylase preparations activated by exposure to enzymatic phosphorylating conditions were analyzed by sucrose density gradient centrifugation, polyacrylamide gel electrophoresis, and gel electrofocusing, the radioactivity of 32P was coincident with the activity of tyrosine hydroxylase, suggesting incorporation of 32P from [gamma-32P]ATP into tyrosine hydroxylase. Polyacrylamide gel electrophoresis of the phosphorylated tyrosine hydroxylase preparation in the presence of 0.1% sodium dodecyl sulfate revealed that the 60,000-dalton polypeptide subunit of tyrosine hydroxylase served as the phosphate acceptor.  相似文献   

18.
Using a homogeneous enzyme from rabbit skeletal muscle, it has been demonstrated that the cyclic adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase reaction is reversible. In addition to the phosphorylated protein substrate, the reverse reaction requires Mg2+, ADP, and cyclic AMP when the holoenzyme is used as the source of enzyme. It is independent of cyclic AMP when the catalytic subunit of the protein kinase is used. The optimum pH for the reverse reaction with 32P-labeled casein as the substrate is 5.7, essentially the same as that for the forward reaction. Among the nucleotide subtrates tested, ADP serves as the best phosphoryl group acceptor. The Km of the enzyme for ADP is 3.3 mM and that for 32P-casein is 1.7 mg/ml. The equilibrium constant at 30 degrees is approximately 0.042 at a magnesium concentration of 10 mM and a pH of 6.9. This result indicates that the free energy of hydrolysis (deltaG0obs) of the phosphorylated protein substrate is relatively high, i.e. approximately -6.5 kcal/mol under these conditions.  相似文献   

19.
The participation of both microtubules and microfilaments in granulosa cell steroidogenesis was assessed by monitoring the effects of colchicine (0-250 microM) and/or cytochalasin B (0-10 micrograms/ml) or dihydrocytochalasin B (0-2.0 micrograms/ml) on cellular morphology and production of progestins during 24 h of culture. Both colchicine and the cytochalasins increased granulosa cell production of progesterone and of 20 alpha-hydroxy-pregn-4-en-3-one (20 alpha-OH-progesterone) in a dose-dependent manner. The largest increase in steroidogenesis (about 2- to 3-fold) was observed at 4-250 microM colchicine and at 2-10 micrograms/ml cytochalasin. Those concentrations of the inhibitors of microtubule or microfilament polymerization that stimulated basal progestin production also markedly influenced cell spreading. Whereas cells cultured for 24 h in medium alone became very flattened with numerous cytoplasmic extensions, those cultured with colchicine (0.2-250 microM) or cytochalasin (0.4-2 micrograms/ml) were much less spread and progressively became more rounded and regular in outline. These changes in cell morphology were reflected by decreases in the mean area occupied by the cells on the culture surface of up to 60-65% and reductions in mean contour index values from 5.7 +/- 0.1 (control) to 3.9 +/- 0.1 (250 microM colchicine), 4.2 +/- 0.1 (2 micrograms/ml cytochalasin B), or 4.1 +/- 0.1 (2 micrograms/ml dihydrocytochalasin B). Cultures containing both colchicine and cytochalasin B exhibited a greater steroidogenic response than that elicited by either inhibitor alone. For example, granulosa cell progesterone production was stimulated almost 2-fold by 4 microM colchicine or 2 microM/ml cytochalasin B, but 5.5-fold by 4 microM colchicine plus 2 micrograms/ml cytochalasin B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The possible role of Na+/H+ antiport in the gonadotropic regulation of steroidogenesis was examined in rat granulosa cells incubated for up to 6 h in a chemically defined medium in the absence or presence of Na+ (128 mM), gonadotropin (FSH or LH; 0-500 ng/ml), dibutyryl cyclic AMP [Bu)2cAMP; 2 mM) and amiloride (0-1 mM). Replacement of Na+ (Na+0) in the incubation medium with choline chloride resulted in a marked decrease in basal and LH-, FSH- and (Bu)2cAMP-stimulated progesterone and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OH-P) synthesis in vitro. The Na+/H+ exchange inhibitor, amiloride significantly suppressed basal and hormone-stimulated progestin production dose-dependently in the presence of Na+0. However, it was without effect in Na+-deficient medium. The effect of the inhibitor on progestin production appeared to be directed at specific step(s) involved in the synthesis of pregnenolone, as concentrations of amiloride which inhibited progesterone production failed to influence the metabolism of exogenous pregnenolone to progestins. Cell viability and the incorporation of [3H]leucine into acid-precipitable material were not affected by amiloride. Our findings support the contention that extracellular sodium is important for steroidogenesis in rat granulosa cells. The inhibition by amilordie indicates an involvement of the Na+/H+ exchange in the regulation of this granulosa cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号