首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dog and rat adrenal glomerulosa cells and subcellular fractions have been utilized to evaluate the mechanism of angiotensin II- and angiotensin III-induced aldosterone production. The effects of angiotensin, ACTH, and potassium have been compared on cyclic AMP and cyclic GMP in isolated glomerulosa cells and adenylate cyclase activity in subcellular fractions. The effect of angiotensin II has also been assessed on Na+-K+-activated ATPase of plasma membrane enriched fractions of dog and rat adrenals. We have demonstrated no effect of angiotensin II or angiotensin III on either adenylate cyclase, cyclic AMP, cyclic GMP, or Na+-K+-dependent ATPase activity over a wide range of concentrations. Potassium ion in concentrations that stimulate significant aldosterone production was also without effect. The negative effects of angiotensin and potassium were contrasted against a positive correlation between an ACTH-induced effect on aldosterone production, adenylate cyclase, and cyclic AMP accumulation. These studies have served to demonstrate that neither adenylate cyclase, cyclic AMP, cyclic GMP, or Na+-K+-activated ATPase seem to be directly involved in the mechanism of action of angiotensins on aldosterone production in the rat and dog adrenal glomerulosa.  相似文献   

2.
Angiotensin II effects on cyclic AMP production and steroid output were studied in a sensitive preparation of isolated rat adrenal glomerulosa cells. With increasing concentrations of angiotensin II logarithmic dose-response curves for aldosterone and cyclic AMP production were similar. The minimum effective dose (0.2nm) for stimulation of aldosterone production also significantly (P<0.001) increased cyclic AMP output. For both aldosterone and cyclic AMP production, the peptide hormone concentration eliciting maximal response (0.2mum) and the ED(50) (median effective dose) values (1nm) were the same; this is consistent with cyclic AMP acting as an intracellular mediator for angiotensin II-stimulated aldosterone production by glomerulosa cells. The angiotensin II antagonist [Sar(1),Ala(8)]angiotensin II inhibited angiotensin II-stimulated corticosterone and aldosterone production in these cells. An equimolar concentration of antagonist halved the response to 20nm-angiotensin II, and complete inhibition was observed with 0.2mum-antagonist. In contrast, [Sar(1),Ala(8)]angiotensin II had no effect on maximally stimulated steroidogenesis induced by serotonin and a raised extracellular K(+) concentration. Increasing concentrations of [Sar(1),Ala(8)]angiotensin II alone decreased corticosterone and aldosterone outputs significantly (P<0.05) at concentrations of 20nm and 2nm of antagonist respectively. A significant (P<0.001) decrease in cyclic AMP production occurred with 2mum antagonist and this was comparable with the decrease in aldosterone production. It is concluded that [Sar(1),Ala(8)]angiotensin II can independently affect glomerulosa-cell steroidogenesis, possibly by modulating adenylate cyclase activity.  相似文献   

3.
Regulation of aldosterone synthesis   总被引:2,自引:0,他引:2  
The effects of angiotensin II and ACTH on cyclic AMP and aldosterone synthesis were studied in cells isolated from the bovine adrenal cortex. Angiotensin is a more potent stimulus of aldosterone synthesis than ACTH and the action of ACTH on aldosterone synthesis in cells from the glomerulosa is augmented by the presence of cells from the fasciculata. Angiotensin stimulates aldosterone synthesis in the absence of detectable changes in cyclic AMP, but the cells do respond to dibutyryl cyclic AMP leaving open the possibility that a cyclic nucleotide may play a role in the steroidogenic action of this hormone in the outer zone of the bovine adrenal cortex.  相似文献   

4.
The relationship between aldosterone production and prosta-glandin E2 synthesis was evaluated using the responses of isolated rat adrenal glomerulosa cells to angiotensin II, ACTH and potassium. Simultaneous PGE2 and aldosterone measurements were made during timed incubations with these stimuli, and in incubations with arachidonic acid, meclofenamate, indomethacin, and aminoglutethamide. PGE2 and aldosterone production were assessed by radioimmunoassay. We were not able to demonstrate stimulation of PGE2 by angiotensin II, ACTH, or potassium despite significant increments in aldosterone production with these stimuli. Arachidonic acid enhanced PGE2 synthesis, but had no effect on aldosterone realease. Indomethacin and meclofenamate inhibited aldosterone secretion. Aminoglutethimide depressed aldosterone production, but had little effect on PGE2 levels in the media. These studies demonstrate that dienoic prostaglandins play no direct role in aldosterone production stimulated by angiotensin II, ACTH, or potassium in rat adrenal glomerulosa cells. Since inhibitors of cyclo-oxygenase decreased aldosterone synthesis, it is possible that fatty acids other than arachidonic acid may be cyclo-oxygenated to products which regulate aldosterone production.  相似文献   

5.
Dispersed chicken adrenocortical cells were preincubated with atrial natriuretic peptide (rANP), sodium nitroprusside (SNP) or 8-bromo cyclic GMP, followed by incubations with ACTH, chicken PTH, cholera toxin or various steroid intermediates of aldosterone production. Cyclic AMP production and aldosterone secretion were evaluated, in order to determine the sites of ANP inhibition in the sequence of events leading to aldosterone secretion. Dose-dependent inhibitory effects on ACTH-stimulated aldosterone secretion by rANP and SNP were observed. Both agents appeared to stimulate cGMP production by the particulate fraction of the avian adrenocortical cells. Aldosterone production, stimulated by cyclic AMP agonists such as ACTH, chicken PTH and cholera toxin, was significantly inhibited by ANP. On the other hand, ANP did not interfere with production or degradation of cAMP. Each of the aldosterone intermediates--pregnenolone, progesterone, 11-deoxycorticosterone and corticosterone--promoted aldosterone production when included in the incubation media. Atrial natriuretic peptide and SNP inhibited aldosterone secretion when enhanced by the intermediates, by about 40-60%, but the ACTH-stimulated secretion was inhibited by over 90%. The results suggest two sites of inhibition by ANP in the pathway of aldosterone synthesis and secretion: synthesis of cholesterol or pregnenolone, and conversion of corticosterone to aldosterone. The inhibition by 8-bromo cGMP of aldosterone secretion and the similar sites of inhibition for ANP and SNP suggest that cyclic GMP mediates the inhibition in both cases.  相似文献   

6.
Effects of ACTH and calcium on cyclic AMP production and steroid output by the zona glomerulosa (the capsular fraction) from the rat adrenal cortex have been studied. Although high concentrations of extracellular calcium potentiated the stimulatory action of ACTH on cyclic AMP and aldosterone output, tetracaine or verapamil inhibited aldosterone output but not cyclic AMP production during ACTH-stimulation. Lanthanum reduced both aldosterone and cyclic AMP accumulation induced by ACTH. These results suggest that an extracellular calcium would be essential in stimulating the capsular steroidogenesis without involvement of the cyclic AMP system.  相似文献   

7.
The relationship between aldosterone production and prostaglandin E2 synthesis was evaluated using the responses of isolated rat adrenal glomerulosa cells to angiotensin II, ACTH and potassium. Simultaneous PGE2 and aldosterone measurements were made during timed incubations with these stimuli, and in incubations with arachidonic acid, meclofenamate, indomethacin, and aminoglutethamide. PGE2 and aldosterone production were assessed by radioimmunoassay. We were not able to demonstrate stimulation of PGE2 by angiotensin II, ACTH, or potassium despite significant increments in aldosterone production with these stimuli. Arachidonic acid enhanced PGE2 synthesis, but had no effect on aldosterone release. Indomethacin and meclofenamate inhibited aldosterone secretion. Aminoglutethimide depressed aldosterone production, but had little effect on PGE2 levels in the media.These studies demonstrate that dienoic prostaglandins play no direct role in aldosterone production stimulated by angiotensin II, ACTH, or potassium in rat adrenal glomerulosa cells. Since inhibitors of cyclo-oxygenase decreased aldosterone synthesis, it is possible that fatty acids other than arachidonic acid may be cyclo-oxygenated to products which regulate aldosterone production.  相似文献   

8.
Aldosterone secretion from adrenal glomerulosa cells can be stimulated by angiotensin II (AII), extracellular potassium and adrenocorticotropin (ACTH). Since the mitochondria can recognize factors generated by AII (cyclic-AMP-independent) and ACTH (cyclic AMP dependent), it is reasonable to postulate the existence of a common intermediate in spite of a different signal transduction mechanism. We have evaluated this hypothesis by stimulation of mitochondria from glomerulosa gland with fractions isolated from glomerulosa gland stimulated with AII or from fasciculata gland stimulated with ACTH; the same fractions were tested using mitochondria from fasciculata cells. Postmitochondrial fractions (PMTS) obtained after incubation of adrenal zona glomerulosa with or without AII (10(-7) M) or ACTH (10(-10) M), were able to increase net progesterone synthesis 5-fold in mitochondria isolated from non-stimulated rat zona glomerulosa. In addition, AII in zona glomerulosa produced in vitro steroidogenic fractions that were able to stimulate mitochondria from zona fasciculata cells. Inhibitors of arachidonic acid release and metabolism blocked corticosterone production in fasciculata cells stimulated with ACTH. This concept is supported by the experiment in which bromophenacylbromide and nordihydroguaiaretic acid also blocked the formation of an activated PMTS. In fact, non-activated PMTS, in the presence of exogenous arachidonic acid AA, behaved as an activated PMTS from ACTH stimulated cells. We suggest that the mechanisms of action of ACTH and AII involve an increase in the release of AA and an activation of the enzyme system which converts AA in leukotriene products.  相似文献   

9.
A bolus IV injection of endothelin-1 (ET-1) (0.5 microgram.kg-1) decreased PRA, without affecting plasma aldosterone (A) concentration. ET-1 exerted a dose-dependent stimulation of basal secretion of A and corticosterone (B) by dispersed zona glomerulosa (ZG) cells, while it did not affect B production by inner adrenocortical cells. ET-1 notably enhanced the secretory response of dispersed ZG cells to a maximal effective concentration of ACTH, but not of either angiotensin II (ANG-II) or potassium. The conclusion is drawn that ET-1 acutely stimulates ZG in rats, by a mechanism probably similar to that underlying the adrenoglomerulotropic actions of ANG-II and potassium.  相似文献   

10.
A prolonged infusion with ANF (20 micrograms/kg/h for 7 days) induced atrophy of zona glomerulosa cells and lowering of basal plasma concentration of aldosterone in rats whose hypothalamo-hypophyseal-adrenal axis and renin-angiotensin system had been interrupted by the simultaneous administration of dexamethasone/captopril and maintenance doses of ACTH/angiotensin II. Chronic ANF treatment also caused comparable reductions in the aldosterone response of zona glomerulosa cells to the acute stimulation with angiotensin II, potassium and ACTH. These data are interpreted to indicate that ANF exerts an inhibitory effect on the growth and secretory activity of rat zona glomerulosa, and that the mechanism underlying this action of ANF does not involve blockade of renin release or ACTH secretion.  相似文献   

11.
Dispersed chick adrenal cells were incubated with either ACTH, cholera toxin or forskolin. All three agents stimulated cyclic AMP accumulation and secretion of corticosterone and aldosterone by the dispersed cells. The dose-response to ACTH was similar for cyclic AMP and corticosterone but aldosterone secretion appeared to be more sensitive to ACTH stimulation. Concentrations higher than 10(-8) M of ACTH caused suppression of corticosterone output but not of cyclic AMP accumulation or aldosterone secretion. A significant cyclic AMP accumulation occurred within 30 min of exposure to ACTH whereas significant increases in steroid secretion were observed only after 30 min. An early increase (within 30 min) in cyclic AMP accumulation with both cholera toxin and forskolin was not accompanied by any significant stimulation of steroid secretion, which occurred only after 120 min. The results with the avian adrenal cells are consistent with the thesis that steroid production in the adrenocortical cells is stimulated by cyclic AMP-dependent pathways, whereas steroid release may be modulated by others.  相似文献   

12.
Direct effects of heparin (0.1-10 IU/ml) on basal and stimulated aldosterone production have been studied using intact rat adrenal glomerulosa cells. Heparin at any dose did not affect basal aldosterone production when added to the incubation medium. Heparin at a 0.01 IU/ml dose had no effect on aldosterone production maximally stimulated by angiotensin II (AII, 4.8 X 10(-8) M), ACTH (4.3 X 10(-9) M) or potassium (8.0 mM). However, heparin at 0.1 and 0.3 IU/ml doses selectively blocked aldosterone production maximally stimulated by AII but not by ACTH or potassium, while the compound at 1 and 10 IU/ml doses inhibited aldosterone production maximally stimulated by these three stimuli. In addition, the inhibitory effect of 0.3 IU/ml heparin occurred as early as 30 min after incubation with heparin. These data suggest that heparin at 0.1 and 0.3 IU/ml doses acts directly on adrenal zona glomerulosa to selectively block the stimulatory action of AII, while the compound at 1 and 10 IU/ml doses inhibits all the stimulatory actions of AII, ACTH and potassium.  相似文献   

13.
Dispersed rat adrenal cells prepared from both the capsule and the decapsulated gland were used to investigate the effects on cyclic AMP accumulation of known stimuli of steroidogenesis [ACTH (adrenocorticotrophin), angiotensin II, K(+) ions and 5-hydroxytryptamine]. Since glomerulosa-cell preparations from capsular strippings are normally contaminated with a proportion of fasciculata cells, cells purified by fractionation on a bovine serum albumin gradient were also used. The results showed that: (1) ACTH and angiotensin II stimulated cyclic AMP accumulation in both fractionated and unfractionated zona fasciculata cells; (2) 5-hydroxytryptamine and an increased extracellular K(+) concentration (from 3.6 to 8.4mm) had no effect on cyclic AMP concentrations in fasciculata cell preparations; (3) the addition of ACTH, angiotensin II, 5-hydroxytryptamine or K(+) to the incubation medium resulted in increased cyclic AMP concentrations in unpurified zona glomerulosa cell preparations; (4) fractionation and hence the virtual elimination of fasciculata contamination, did not affect the response to 5-hydroxytryptamine and increased K(+) concentration. However, the responses to ACTH and angiotensin II were markedly lowered but not abolished. These results strongly suggest a link between cyclic AMP production and steroidogenesis in the zone of the adrenal gland that specifically secretes aldosterone. All four agents used stimulated both steroid output and cyclic AMP accumulation. However, at certain doses of 5-hydroxytryptamine, K(+) and angiotensin II the significant increases in corticosterone output were not accompanied by measurable increases in cyclic AMP accumulation.  相似文献   

14.
Angiotensin II (AII) and N6,O2'-dibutyryladenosine 3':5'-cyclic monophosphate (dibutyryl cyclic AMP) both stimulated aldosterone synthesis in bovine adrenal glomerulosa cells. AII altered 45Ca2+ fluxes and increased 32PO4 incorporation into phosphatidylinositol in these cells, whereas dibutyryl cyclic AMP did not affect either process. Neither AII nor dibutyryl cyclic AMP increased the mass of phosphatidylinositol. Both agents are known to stimulate pregnenolone synthesis. Thus, although dibutyryl cyclic AMP and AII may increase aldosterone synthesis at a common site (pregnenolone synthesis), they do so by different mechanisms. AII stimulation of phosphatidylinositol labeling by 32PO4 (the "PI effect") was blocked when cells were incubated in a medium containing both EGTA and the calcium antagonist, 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxy-benzoate hydrochloride (TMB-8), suggesting a calcium requirement for the PI effect.  相似文献   

15.
Synthetic atrial natriuretic factor (ANF) inhibited aldosterone production by suspensions of bovine adrenal glomerulosa cells. Inhibition by ANF was most pronounced when basal aldosterone production was measured. The effects of angiotensin II (AII), N6,O2'-dibutyryl-adenosine 3':5'-cyclic monophosphate (dibutyryl cyclic AMP), and elevated potassium were also inhibited by ANF. Inhibition could be partially overcome by high doses of agonist. Inhibition was localized to the early pathway of aldosteronogenesis, to a step before cholesterol side-chain cleavage. ANF had no effect on binding of AII to receptors, on the stimulation by AII of phospholipid turnover, or on the alteration by AII of calcium fluxes.  相似文献   

16.
We previously demonstrated that synthetic 48-73 atrial natriuretic factor (ANF) (previously called 8-33 ANF) blocked the response of rat adrenal glomerulosa cells to angiotensin II, ACTH and potassium. We have now investigated the effects of natural 43-73 ANF, oxidised synthetic 48-73 ANF and the natural 1-73 ANF on aldosterone output by rat glomerulosa cells. The natural 43-73 ANF and the natural 1-73 ANF were equipotent to 48-73 ANF in inhibiting the stimulation of aldosterone secretion produced by angiotensin II with an IC50 of 2 X 10(-9)M. Similar results were obtained with ACTH and potassium. After oxidation with performic acid, 48-73 ANF was completely devoid of activity on the response of aldosterone to angiotensin II, ACTH and potassium. We conclude that the intramolecular disulphide bond in 48-73 ANF is critical for maintaining the active conformation of ANF.  相似文献   

17.
Both angiotensin II and adrenocorticotropic hormone (ACTH) are well known to play a crucial role on the regulation of aldosterone production in adrenal glomerulosa cells. Recent observations suggest that the steroidogenic action of ACTH is mediated via the cAMP messenger system, whereas angiotensin II acts mainly through the phosphoinositide pathway. However, there have been no reports concerning the interaction between the cAMP messenger system activated by ACTH and the Ca2+ messenger system induced by angiotensin II. Both ACTH and angiotensin II simultaneously act on adrenal cells for regulating steroidogenesis under physiological conditions. Thus the present experiments were performed to examine the effect of ACTH on the action of angiotensin II by measuring angiotensin II receptor activity, cytosolic Ca2+ movement, and aldosterone production. The major findings of the present study are that short-term exposure to a high dose of ACTH (10(-7) M) inhibited 125I-angiotensin II binding to bovine adrenal glomerulosa cells, decreased the initial spike phase of [Ca2+]i induced by angiotensin II, and inhibition of angiotensin II-induced aldosterone production. Low dose of ACTH (10(-10) M), which did not increase cAMP formation, did not affect angiotensin II receptor activity. These studies have shown that angiotensin II receptors of bovine adrenal glomerulosa cells can be down-regulated by 1 mM dibutyryl cyclic AMP, as well as by effectors which are able to activate cAMP formation (10(-7) M ACTH and 10(-5) M forskolin). The rapid decrease in angiotensin II receptors induced by 10(-7)M ACTH was associated with a decreased steroidogenic responsiveness and a decreased rise in the [Ca2+]i response induced by angiotensin II. These studies show that the cAMP-dependent processes activated by ACTH have the capacity to interfere with signal transduction mechanisms initiated by receptors for angiotensin II.  相似文献   

18.
The Wnt family molecules Dickkopf-3 (DKK3) and WNT4 are present at higher concentrations in the zona glomerulosa than in the rest of the adrenal cortex. In order to study direct effects of these proteins on adrenocortical cell function, we created adenoviruses encoding human DKK3 and WNT4. When added to cultured human adrenocortical cells, DKK3 inhibited aldosterone and cortisol biosynthesis, either alone or together with cyclic AMP. WNT4 increased steroidogenesis when added alone but decreased it in the presence of cyclic AMP. A control adenovirus encoding GFP had no effect. RNA was prepared from cultured cells and was assayed by real-time PCR. CYP11A1 (cholesterol side-chain cleavage enzyme), HSD3B2 (3beta-hydroxysteroid dehydrogenase type II), CYP17 (17alpha-hydroxylase), CYP21 (21-hydroxylase) and CYP11B1 (11beta-hydroxylase) mRNAs were all increased by cyclic AMP, whereas CYP11B2 (aldosterone synthase) was unaffected. DKK3 decreased cyclic AMP-stimulated CYP17. WNT4 increased both CYP17 and CYP21 in the absence of cyclic AMP. Both DKK3 and WNT4 increased the level of CYP11B2. These data show that these Wnt signaling molecules have multiple actions on steroidogenesis in adrenocortical cells, including effects on overall steroidogenesis (aldosterone and cortisol biosynthesis) and distinct effects on steroidogenic enzyme mRNA levels. The co-localization of DKK3 and WNT4 in the glomerulosa and their stimulation of CYP11B2 imply an action on glomerulosa-specific function.  相似文献   

19.
We examined the effect of rat atrial natriuretic peptide (ANP) on ACTH, dibutyryl cAMP, angiotensin II and potassium-stimulated aldosterone secretion by dispersed rat adrenal glomerulosa cells. ANP inhibited ACTH, angiotensin II and potassium-stimulated aldosterone secretion with IC50's between 0.15-0.20 nM. Inhibition by 10 nM ANP could not be overcome with higher concentrations of these stimuli. ANP shifted the dibutyryl cAMP dose-response curve slightly to the right but did not blunt the maximal aldosterone secretory response. The sites of ANP inhibition in the aldosterone biosynthetic pathway for these stimuli were also examined. ANP inhibited activation of the cholesterol desmolase (CD) enzyme complex by ACTH, angiotensin II and potassium. Activation of the corticosterone methyl oxidase (CMO) enzyme complex by potassium was inhibited by ANP, however, activation by ACTH was not blocked. We concluded that: 1) ANP is a potent inhibitor of ACTH, angiotensin II and potassium-stimulated aldosterone secretion; 2) inhibition of ACTH stimulation is primarily due to lower cAMP levels and; 3) inhibition of angiotensin II and potassium stimulation reflects a block in the activating mechanism of the CMO and/or CD enzyme complexes, whereas CD but not CMO activation by ACTH is inhibited by ANP.  相似文献   

20.
D Petrasek  G Jensen  M Tuck  N Stern 《Life sciences》1992,50(23):1781-1787
Though long standing diabetes mellitus is frequently accompanied by hypoaldosteronism, the role of insulin in this setting has never been clearly established. In the present study we have examined the direct effects of insulin on aldosterone production in rat zona glomerulosa cells in vitro. Insulin is shown to directly stimulate aldosterone production in a dose dependent manner, and to attenuate angiotensin II mediated aldosterone production, without affecting angiotensin II receptor binding kinetics. Insulin had no effect on aldosterone production mediated by the other physiological stimuli (K+ and ACTH). These data suggest a possible interaction between insulin and angiotensin II in the regulation of aldosterone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号