首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent developments in the understanding of the molecular control of iron homeostasis provided novel insights into the mechanisms responsible for normal iron balance. However in chronic anemias associated with iron overload, such mechanisms are no longer sufficient to offer protection from iron toxicity, and iron chelating therapy is the only method available for preventing early death caused mainly by myocardial and hepatic damage. Today, long-term deferoxamine (DFO) therapy is an integral part of the management of thalassemia and other transfusion-dependent anemias, with a major impact on well-being and survival. However, the high cost and rigorous requirements of DFO therapy, and the significant toxicity of deferiprone underline the need for the continued development of new and improved orally effective iron chelators. Within recent years more than one thousand candidate compounds have been screened in animal models. The most outstanding of these compounds include deferiprone (L1); pyridoxal isonicotinoyl hydrazone (PIH) and; bishydroxy- phenyl thiazole. Deferiprone has been used extensively as a substitute for DFO in clinical trials involving hundreds of patients. However, L1 treatment alone fails to achieve a negative iron balance in a substantial proportion of subjects. Deferiprone is less effective than DFO and its potential hepatotoxicity is an issue of current controversy. A new orally effective iron chelator should not necessarily be regarded as one displacing the presently accepted and highly effective parenteral drug DFO. Rather, it could be employed to extend the scope of iron chelating strategies in a manner analogous with the combined use of medications in the management of other conditions such as hypertension or diabetes. Coadministration or alternating use of DFO and a suitable oral chelator may allow a decrease in dosage of both drugs and improve compliance by decreasing the demand on tedious parenteral drug administration. Combined use of DFO and L1 has already been shown to result in successful depletion of iron stores in patients previously failing to respond to single drug therapy, and to lead to improved compliance with treatment. It may also result in a “shuttle effect” between weak intracellular chelators and powerful extracellular chelators or exploit the entero-hepatic cycle to promote fecal iron excretion. All of these innovative ways of chelator usage are now awaiting evaluation in experimental models and in the clinical setting.  相似文献   

2.
Current iron chelation therapy consists primarily of DFO (desferrioxamine), which has to be administered via intravenous infusion, together with deferiprone and deferasirox, which are orally-active chelators. These chelators, although effective at decreasing the iron load, are associated with a number of side effects. Grady suggested that the combined administration of a smaller bidentate chelator and a larger hexadentate chelator, such as DFO, would result in greater iron removal than either chelator alone [Grady, Bardoukas and Giardina (1998) Blood 92, 16b]. This in turn could lead to a decrease in the chelator dose required. To test this hypothesis, the rate of iron transfer from a range of bidentate HPO (hydroxypyridin-4-one) chelators to DFO was monitored. Spectroscopic methods were utilized to monitor the decrease in the concentration of the Fe-HPO complex. Having established that the shuttling of iron from the bidentate chelator to DFO does occur under clinically relevant concentrations of chelator, studies were undertaken to evaluate whether this mechanism of transfer would apply to iron removal from transferrin. Again, the simultaneous presence of both a bidentate chelator and DFO was found to enhance the rate of iron chelation from transferrin at clinically relevant chelator levels. Deferiprone was found to be particularly effective at 'shuttling' iron from transferrin to DFO, probably as a result of its small size and relative low affinity for iron compared with other analogous HPO chelators.  相似文献   

3.
In order to investigate the capability of two chelators deferasirox (DFX or ICL670) and deferiprone (L1) in removing lead from the body, the present research was performed. Two does levels of 40 and 80 mg/kg body weight of lead (II) chloride was given to rats as biological model for 45 days. After 45 days, some toxicity symptoms were observed in rats such as loss of hair and weight, appearance of red dots around eyes, weakness and irritability. After lead application, chelation therapy with DFX and L1 as mono and combined (DFX, L1 and DFX + L1) was done for 10 days. After chelation therapy, lead level in different tissues reduced. The combined chelation therapy results showed that these chelators are able to remove lead from the body and toxicity symptoms decreased. The combined therapy results (DFX + L1) show higher efficacy and lower toxicity compared to single therapies.  相似文献   

4.
Iron depletion has been confirmed as an efficient strategy for cancer treatment. In the current study, a series of 1,4,7-triazacyclononane derivatives HE-NO2A, HP-NO2A and NE2P2A, as well as the bifunctional chelators p-NO2-PhPr-NE3TA and p-NH2-PhPr-NE3TA were synthesized and evaluated as iron-depleting agents for the potential anti-cancer therapy against human hepatocellular carcinoma. The cytotoxicity of these chelators was measured using hepatocellular cancer cells and compared with the clinically available iron depletion agent DFO and the universal metal chelator DTPA. All these 1,4,7-triazacyclononane-based chelators exhibited much stronger antiproliferative activity than DFO and DTPA. Among them, chelators with phenylpropyl side chains, represented by p-NO2-PhPr-NE3TA and p-NH2-PhPr-NE3TA, displayed the highest antiproliferative activity against HepG2 cells. Hence, these compounds are attractive candidates for the advanced study as iron depletion agents for the potential anti-cancer therapy, and could be further in conjugation with a targeting moiety for the future development in targeted iron depletion therapy.  相似文献   

5.
Iron chelators such as deferiprone, deferoxamine (DFO) and ICL670 (deferasirox) have previously been shown to display in vitro and/or in vivo antimalarial activities. To gain further insight in their antimalarial mechanism of action, their activities on inhibition of β-hematin formation and on both peroxidative and glutathione (GSH)-mediated degradation of hemin were investigated. Neither deferiprone nor DFO were able to inhibit β-hematin formation while ICL670 activity nearly matched that of chloroquine (CQ). Peroxidative degradation of hemin was also only strongly inhibited by both CQ and ICL670, the latter being significantly more efficient at pH 5.2. All iron chelators displayed minor, if any, inhibitory activity on GSH-mediated degradation of hemin. Discrepancies in the results obtained for the three iron chelators show that iron chelation is not the main driving force behind interference with heme degradation. Deferiprone, DFO and ICL670 share little structural community but both ICL670 and antimalarial ursolic acid derivatives (previously shown to block β-hematin formation and the peroxidative degradation of hemin) have hydrophobic groups and hydroxyphenyl moieties. These similarities in structures and activities further back up a possible two-step mechanism of action previously proposed for ursolic acid derivatives (Mullié et al., 2010) implying (1) stacking of an hydrophobic structure to hemin and (2) additive protection of hemin ferric iron from H2O2 by hydroxyphenyl groups through steric hindrance and/or trapping of oxygen reactive species in the direct neighborhood of ferric iron. These peculiar antimalarial mechanisms of action for ICL670 warrant further investigations and development.  相似文献   

6.
The elimination, tissue distribution, and metabolism of [1-14C]perfluorooctanoic acid (PFOA) was examined in male and female rats for 28 days after a single ip dose (9.4 μmol/kg, 4 mg/kg). A sex difference in urinary elimination of PFOA-derived 14C was observed. Female rats eliminated PFOA-derived radioactivity rapidly in the urine with 91% of the dose being excreted in the first 24 hr. In the same period, male rats eliminated only 6% of the administered 14C in the urine. The sex-related difference in urinary elimination resulted in the observed difference in the whole-body elimination half-life (t1/2) of PFOA in males (t1/2 = 15 days) and females (t1/2 < 1 day). Analysis of PFOA-derived 14C in tissues showed that the liver and plasma of male rats and the liver, plasma, and kidney of female rats were the primary tissues of distribution. The relatively high concentration of PFOA in the male liver was further examined using an in situ nonrecirculating liver perfusion technique. It was shown that 11% of the PFOA infused was extracted by the liver in a single pass. The ability of the liver to eliminate PFOA into bile was examined in rats whose renal pedicles were ligated to alleviate sex differences in the urinary excretion of PFOA. In a 6-hr period following IP administration of PFOA, there was no apparent difference in biliary excretion, where both males and females eliminated less than 1% of the PFOA dose via this route. We hypothesized that the sex difference in the persistence of PFOA was due to a more rapid formation of a PFOA-containing lipid (i.e., a PFOA-containing mono-, di-, or triacylglycerol, cholesteryl ester, methyl ester, or phospholipid) in the male rat. Also, the increased urinary elimination of PFOA in females may have been due to increased metabolism to a PFOA-glucuronide or sulfate ester. However, no evidence that PFOA is conjugated to form a persistent hybrid lipid was obtained, nor were polar metabolites of PFOA in urine or bile detected. In addition, daily urinary excretion of fluoride in male and female rats before or after PFOA treatment were similar, suggesting that the parent compound is not defluorinated. Thus, the more rapid elimination of PFOA from female rats is not due to formation of a PFOA metabolite.  相似文献   

7.
beta-Thalassaemia major is an inherited blood disorder which is complicated by repeated blood transfusion and excessive gastrointestinal iron (Fe) absorption, which leads to toxic Fe overload. Current treatment using the chelator, desferrioxamine (DFO), is expensive and cumbersome since the drug requires long subcutaneous infusions and it is not orally active. A novel chelator, 2-pyridylcarboxaldehyde 2-thiophenecarboxyl hydrazone (PCTH), was recently designed and shown to have high Fe chelation efficacy in vitro. The aim of this investigation was to examine the Fe chelation efficacy of PCTH in vitro implementing primary cultures of cardiomyocytes and in vivo using mice. We showed that PCTH was significantly (P<0.005) more effective than DFO at mobilising (59)Fe from prelabelled cardiomyocytes. Moreover, PCTH prevented the incorporation of (59)Fe into ferritin during Fe uptake from (59)Fe-labelled transferrin. These effects were important to assess as cardiac complications caused by Fe deposition are a major cause of death in beta-thalassaemia major patients. Further studies showed that PCTH was orally active and well tolerated by mice at doses ranging from 50 to 200 mg/kg, twice daily (bd), for 2 days. A dose-dependent increase in faecal (59)Fe excretion was observed in the PCTH-treated group. This level of Fe excretion at 200 mg/kg was similar to the same dose of the orally effective chelators, pyridoxal isonicotinoyl hydrazone (PIH) and deferiprone (L1). Effective Fe chelation in the liver by PCTH was shown via its ability to reduce ferritin-(59)Fe accumulation. Mice treated for 3 weeks with PCTH at doses of 50 and 100 mg/kg/bd showed no overt signs of toxicity as determined by weight loss and a range of biochemical and haematological indices. In subchronic Fe excretion studies over 3 weeks, PIH and PCTH at 75 mg/kg/bd for 5 days/week increased faecal (59)Fe excretion to 140% and 145% of the vehicle control, respectively. This study showed that PCTH was well tolerated at 100 mg/kg/bd and induced considerable Fe excretion by the oral route, suggesting its potential as a candidate to replace DFO.  相似文献   

8.
Cell-impermeant iron chelator desferrioxamine (DFO) can have access to organelles if appended to suitable vectors. Mitochondria are important targets for the treatment of iron overload-related neurodegenerative diseases. Triphenylphosphonium (TPP) is a delocalized lipophilic cation used to ferry molecules to mitochondria. Here we report the synthesis and characterization of the conjugate TPP–DFO as a mitochondrial iron chelator. TPP–DFO maintained both a high affinity for iron and the antioxidant activity when compared to parent DFO. TPP–DFO was less toxic than TPP alone to A2780 cells (IC50 = 135.60 ± 1.08 and 4.34 ± 1.06 μmol L?1, respectively) and its native fluorescence was used to assess its mitochondrial localization (Rr = +0.56). These results suggest that TPP–DFO could be an interesting alternative for the treatment of mitochondrial iron overload e.g. in Friedreich’s ataxia.  相似文献   

9.
The therapeutic efficacy of two thiol chelators, meso 2,3-dimercaptosuccinic acid (DMSA) or 2,3-dimercaptopropane sulfonate (DMPS) in treating chronic arsenic intoxication was investigated in male rats. Both the chelators were effective in promoting urinary arsenic excretion and restoring arsenic induced inhibition of blood -aminolevulinic acid dehydratase activity and hepatic glutathione level. Elevation of urinary -aminolevulinic acid excretion and arsenic concentration in blood, liver and kidneys were reduced significantly by both the chelators. Histopathological lesions induced by arsenic were also effectively reduced by the above chelators. DMSA being more effective than DMPS. The results suggest DMSA and DMPS to be effective antidotes for treating chronic arsenic toxicity in experimental animals.  相似文献   

10.
While conducting studies on the prevention of mortality from acute iron intoxication in rats, diazepam, given to prevent animal suffering, was observed to be associated with reduced mortality in a limited number of animals. The objective was to assess whether diazepam reduces mortality following acute iron intoxication in rats. Survival of rats was compared among groups receiving (i) orally 612 mg/kg iron alone (LD60), (ii) iron with a subcutaneous injection of 2.5 mg/kg diazepam (DZ), or (iii) iron, DZ with 800 mg/kg deferiprone intraperitoneal injections. The administration of DZ decreased mortality from 60 to 16% (p < 0.001). The addition of deferiprone to DZ resulted in zero mortality (p < 0.05 compared with the DZ group) over the study period. The administration of DZ was not associated with decreased iron absorption or increased urinary iron excretion, whereas the administration of deferiprone did result in urinary iron excretion. Microscopic examination suggests that diazepam administration may be associated with lower intracellular accumulation of iron. In conclusion, diazepam reduces mortality from iron overdose in rats through a yet unidentified mechanism, although the drug does not inhibit iron absorption or enhance urinary iron removal.  相似文献   

11.
The iron chelators desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone (PIH), 2,2-bipyridine, diethylenetriamine penta-acetic acid (DTPA) and 1,2 dimethyl-3-hydroxy pyrid-4-one (CP20) were analysed for their ability to change59Fe uptake and release from the brain of 15- and 63-day rats either during or after intravenous injection of59Fe-125I-transferrin. DTPA was the only chelator unable to significantly reduce iron uptake into the brain of 15-day rats. This indicates that iron is not released from transferrin at the luminal surface of brain capillary endothelial cells. CP20 was able to reduce iron uptake in the brain by 85% compared to 28% with DFO. Only CP20 was able to significantly reduce brain iron uptake in 63 day rats. Once59Fe had entered the brain no chelator used was able to mediate its release. All of the chelators except CP20 had similar effects on femur iron uptake as they did on brain uptake, suggesting similar iron uptake mechanisms. It is concluded that during the passage of transferrin-bound iron into the brain the iron is released from transferrin within endothelial cells after endocytosis of transferrin.  相似文献   

12.
The effectiveness of 2,3-dimercaptopropanol (BAL) andmeso-2,3-dimercaptosuccinic acid (DMSA) on HgCl2-induced nephrotoxicity was studied in the rat. Seven groups of adult male rats were given a single sc toxic dose of HgCl2 (0.68 mg/kg) followed by 0.9% saline (positive control group), BAL (15, 30, and 60 mg/kg) or DMSA (50, 100, and 200 mg/kg) administered ip at 0, 24, 48, and 72 h thereafter. Although the renal function of HgCl2-exposed rats was slightly improved after BAL administration, Hg concentrations in the kidney were only reduced at 60 mg/kg. In addition, the protective effect of BAL was not dose-related. In contrast to BAL, DMSA was effective in increasing the urinary excretion of Hg and in reducing the renal Hg content. These results show that DMSA would be more effective than BAL in preventing or in protecting against inorganic Hg-induced nephrotoxicity.  相似文献   

13.
Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.  相似文献   

14.
The effects of an antagonist of contractile prostanoids, L-640,035 (3-hydroxymethyl-dibenzo[b,f]thiepen-5-dioxide) upon antigen-induced bronchoconstriction have been studied in inbred rats with non-specific bronchial hyperreactivity and in conscious squirrel monkeys. L-640,035 was a potent inhibitor of antigen-induced dyspnea (ED50 3.1 mg/kg p.o.) in inbred rats pretreated with methysergide (3 μg/kg i.v.) but produced no significant inhibition in untreated rats. Administration of L-640,035 (10 mg/kg p.o.) to conscious squirrel monkeys exposed to aerosols of ascaris antigen markedly inhibited changes in pulmonary resistance (RL) and dynamic compliance (CDYN). At a lower dose (1 mg/kg p.o.) the inhibition of changes in CDYN were similar but the effects on RL were reduced. It was concluded first that contractile prostanoids may be important mediators of antige-induced bronchoconstriction and secondly that L-640,035 may be effective in human allergic asthma.  相似文献   

15.
A library of acylhydrazone iron chelators was synthesized and tested for its ability to inhibit the growth of a chloroquine-resistant strain of Plasmodium falciparum. Some of these new compounds are significantly more active than desferrioxamine DFO, the iron chelator in widespread clinical use and also than the most effective chelators.  相似文献   

16.
Efficacy of N-(2-mercaptopropionyl) glycine to reduce the body burden of lead and restore the altered biochemical parameters in lead or lead and ethanol intoxicated rats was investigated. The investigation was aimed to suggest suitable prophylaxis of lead poisoning prevalent among workers in lead industry who may also be exposed to ethanol. The rats were given lead (10 mg/kg, p.o.) or lead and ethanol (10% v/v in drinking water) daily for 8 weeks. Following exposure period a single dose of N-(2-mercaptopropionyl) glycine (0.3 mmole/kg, intraperitoneal) was given daily for 4 days. The chelator was effective in enhancing the urinary and faecal excretion of lead, reducing the concentration of lead in liver and kidney and lowering the excretion of delta-aminolevulinic acid in lead treated rats. However, the protection was more noticeable in animals treated with lead alone than with lead and ethanol.  相似文献   

17.
Studies were conducted to determine whether prostaglandins are added to the urine during its passage through the rat urinary blader . Control rats and rats with chronic streptozotocin-induced diabetes were anesthetized with Inactin, 100 mg/kg i.p., and urine was collected simultaneously from both kidneys. Urine from the left kidney was collected directly from the renal pelvis via a ureteral cannula, while urine from the right kidney was collected via a cannula in the urinary bladder. Prostaglandins in the urine were measured by radioimmunoassay. No difference in urinary concentration or rate of excretion of 6-keto-PGF or PGE2 was seen between ureteral urine and bladder urine from either normal or diabetic rats. The results of this study indicate that there is no intralumenal addition of either 6-keto-PGF or PGE2 to the urine by the ureteral bladder of rats.  相似文献   

18.
Iron chelators have been employed in various studies aimed at evaluating the relationship between the iron status of the host and the development of infection. In the present study, the effects of benznidazole (BZ) therapy in combination with the iron chelator desferrioxamine (DFO) on the development of infection in mice inoculated with Trypanosoma cruzi Y strain have been investigated. Infected mice treated with DFO presented lower levels of parasitemia compared with infected untreated animals. Therapy with BZ for 21 days, with or without DFO, led to decreased parasitemia and reduced mortality, but BZ in combination with DFO treatment for 35 days (BZ/DFO-35) gave 0% mortality. All infected groups presented lower levels of iron in the liver, but serum iron concentrations were greater in DFO-35 and BZ/DFO-35, whereas hemoglobin levels were higher in BZ/DFO-35 and lower in DFO-35 compared with other treated groups. The percentage cure, determined from negative hemoculture and PCR results in animals that had survived for 60 days post-infection, was 18% for BZ and BZ/DFO-35, 42% for BZ combined with DFO for 21 days, and 67% for DFO-35. The results demonstrate that modification in iron stores increases BZ efficacy.  相似文献   

19.
The role of signaling pathways in the regulation of cellular iron metabolism is becoming increasingly recognized. Iron chelation is used for the treatment of iron overload but also as a potential strategy for cancer therapy, because iron depletion results in cell cycle arrest and apoptosis. This study examined potential signaling pathways affected by iron depletion induced by desferrioxamine (DFO) or di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Both chelators affected multiple molecules in the mitogen-activated protein kinase (MAPK) pathway, including a number of dual specificity phosphatases that directly de-phosphorylate MAPKs. Examination of the phosphorylation of major MAPKs revealed that DFO and Dp44mT markedly increased phosphorylation of stress-activated protein kinases, JNK and p38, without significantly affecting the extracellular signal-regulated kinase (ERK). Redox-inactive DFO-iron complexes did not affect phosphorylation of JNK or p38, whereas the redox-active Dp44mT-iron complex significantly increased the phosphorylation of these kinases similarly to Dp44mT alone. Iron or N-acetylcysteine supplementation reversed Dp44mT-induced up-regulation of phospho-JNK, but only iron was able to reverse the effect of DFO on JNK. Both iron chelators significantly reduced ASK1-thioredoxin complex formation, resulting in the increased phosphorylation of ASK1, which activates the JNK and p38 pathways. Thus, dissociation of ASK1 could serve as an important signal for the phosphorylation of JNK and p38 activation observed after iron chelation. Phosphorylation of JNK and p38 likely play an important role in mediating the cell cycle arrest and apoptosis induced by iron depletion.  相似文献   

20.
Lee SK  Jang HJ  Lee HJ  Lee J  Jeon BH  Jun CD  Lee SK  Kim EC 《Life sciences》2006,79(15):1419-1427
Iron is essential for neoplastic cell growth, and iron chelators have been tested for potential anti-proliferative and anti-cancer effects, but the effects of iron chelators on oral cancer have not been clearly elucidated. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during iron chelator-induced apoptosis and differentiation of immortalized human oral keratinocytes (IHOK) and oral cancer cells (HN4). The iron chelator deferoxamine (DFO) exerted potent time- and dose-dependent inhibitory effects on the growth and apoptosis of IHOK and HN4 cells. DFO strongly activates p38 MAP kinase and extracellular signal-regulated kinase (ERK), but does not activate c-Jun N-terminal kinase/stress-activated protein kinase. Of the three MAP kinase blockers used, the selective p38 MAP kinase inhibitor SB203580 and ERK inhibitor PD98059 protected IHOK and HN4 cells against iron chelator-induced cell death, which indicates that the p38 and ERK MAP kinase is a major mediator of apoptosis induced by this iron chelator. Interestingly, treatment of IHOK and HN4 cells with SB203580 and PD98059 abolished cytochrome c release, as well as the activation of caspase-3 and caspase-8. DFO suppressed the expression of epithelial differentiation markers such as involucrin, CK6, and CK19, and this suppression was blocked by p38 and ERK MAP kinase inhibitors. Collectively, these data suggested that p38 and ERK MAP kinase plays an important role in iron chelator-mediated cell death and in the suppression of differentiation of oral immortalized and malignant keratinocytes, by activating a downstream apoptotic cascade that executes the cell death pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号