首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondria import the majority of their proteins from the cytosol. At the mitochondrial outer membrane, import is initiated through a series of reactions, which include preprotein recognition, unfolding, insertion and translocation. These processes are facilitated by a multisubunit complex, the TOM complex. Specific roles can now be assigned to several components of this complex. Although the import machinery of the outer membrane can insert and translocate a few proteins on its own, completion of translocation o f most preproteins is dependent upon coupling to both the membrane potential and mt-Hsp70/ATP-driven transport across the inner membrane, mediated by the TIM complex.  相似文献   

2.
The process of mitochondrial protein import has been studied for many years. Despite this attention, many processes associated with mitochondrial biogenesis are poorly understood. Insight into one of these processes, assembly of beta-barrel proteins into the mitochondrial outer membrane, will be discussed. This review focuses on recent data that suggest that assembly of beta-barrel proteins into the outer mitochondrial membrane is dependent on a newly identified protein complex termed the sorting and assembly machinery (SAM complex). Members of the SAM complex have been identified in both eukaryotic and prokaryotic organisms, suggesting that the process of beta-barrel assembly into membranes has been conserved through evolution.  相似文献   

3.
Proteins targeted to mitochondria are transported into the organelle through a high molecular weight complex called the translocase of the outer mitochondrial membrane (TOM). At the core of this machinery is a multisubunit general import pore (GIP) of 400 kDa. Here we report the assembly of the yeast GIP that involves two successive intermediates of 250 kDa and 100 kDa. The precursor of the channel-lining Tom40 is first targeted to the membrane via the receptor proteins Tom20 and Tom22; it then assembles with Tom5 to form the 250 kDa intermediate exposed to the intermembrane space. The 250 kDa intermediate is followed by the formation of the 100 kDa intermediate that associates with Tom6. Maturation to the 400 kDa complex occurs by association of Tom7 and Tom22. Tom7 functions by promoting both the dissociation of the 400 kDa complex and the transition from the 100 kDa intermediate to the mature complex. These results indicate that the dynamic conversion between the 400 kDa complex and the 100 kDa late intermediate allows integration of new precursor subunits into pre-existing complexes.  相似文献   

4.
The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of β-barrel proteins of the outer membrane. Several α-helical outer membrane proteins are known to carry multiple transmembrane segments; however, only limited information is available on the biogenesis of these proteins. We report that mitochondria lacking the mitochondrial import protein 1 (Mim1) are impaired in the biogenesis of multispanning outer membrane proteins, whereas overexpression of Mim1 stimulates their import. The Mim1 complex cooperates with the receptor Tom70 in binding of precursor proteins and promotes their insertion and assembly into the outer membrane. We conclude that the Mim1 complex plays a central role in the import of α-helical outer membrane proteins with multiple transmembrane segments.  相似文献   

5.
A major 70 kDa protein of the yeast mitochondrial outer membrane is coded by a nuclear gene, synthesized on cytoplasmic ribosomes, and transported to the mitochondrial outer membrane. In order to investigate in detail the information necessary for localizing the 70 kDa protein at the outer membrane, we have examined the intracellular and intramitochondrial location of fusion proteins which consist of various lengths of the amino-terminal region of the 70 kDa protein with an enzymatically active beta-galactosidase. The results indicate that the extreme amino-terminal 12 amino acids of the 70 kDa protein function as a targeting sequence, whereas the subsequent uncharged region (up to residue 29) is necessary for "stop-transfer" and "anchoring" functions. Moreover, we have found that a fusion protein which contained the amino-terminal 19 amino acids of the 70 kDa protein is localized on the outer membrane as well as in the matrix space. Changes in the dual localization of this fusion protein accompanied its overproduction or expression in a respiration-deficient yeast mutant.  相似文献   

6.
The mitochondrial outer membrane protein Tom40 is the general entry gate for imported proteins in essentially all eukaryotes. Trypanosomatids lack Tom40, however, and use instead a protein termed the archaic translocase of the outer mitochondrial membrane (ATOM). Here we report the discovery of pATOM36, a novel essential component of the trypanosomal outer membrane protein import system that interacts with ATOM. pATOM36 is not related to known Tom proteins from other organisms and mediates the import of matrix proteins. However, there is a group of precursor proteins whose import is independent of pATOM36. Domain-swapping experiments indicate that the N-terminal presequence-containing domain of the substrate proteins at least in part determines the dependence on pATOM36. Secondary structure profiling suggests that pATOM36 is composed largely of α-helices and its assembly into the outer membrane is independent of the sorting and assembly machinery complex. Taken together, these results show that pATOM36 is a novel component associated with the ATOM complex that promotes the import of a subpopulation of proteins into the mitochondrial matrix.  相似文献   

7.
The mitochondrial outer membrane (MOM) harbors several multispan proteins that execute various functions. Despite their importance, the mechanisms by which these proteins are recognized and inserted into the outer membrane remain largely unclear. In this paper, we address this issue using yeast mitochondria and the multispan protein Ugo1. Using a specific insertion assay and analysis by native gel electrophoresis, we show that the import receptor Tom70, but not its partner Tom20, is involved in the initial recognition of the Ugo1 precursor. Surprisingly, the import pore formed by the translocase of the outer membrane complex appears not to be required for the insertion process. Conversely, the multifunctional outer membrane protein mitochondrial import 1 (Mim1) plays a central role in mediating the insertion of Ugo1. Collectively, these results suggest that Ugo1 is inserted into the MOM by a novel pathway in which Tom70 and Mim1 contribute to the efficiency and selectivity of the process.  相似文献   

8.
Setoguchi K  Otera H  Mihara K 《The EMBO journal》2006,25(24):5635-5647
C-tail-anchored (C-TA) proteins are anchored to specific organelle membranes by a single transmembrane segment (TMS) at the C-terminus, extruding the N-terminal functional domains into the cytoplasm in which the TMS and following basic segment function as the membrane-targeting signals. Here, we analyzed the import route of mitochondrial outer membrane (MOM) C-TA proteins, Bak, Bcl-XL, and Omp25, using digitonin-permeabilized HeLa cells, which provide specific and efficient import under competitive conditions. These experiments revealed that (i) C-TA proteins were imported to the MOM through a common pathway independent of the components of the preprotein translocase of the outer membrane, (ii) the C-TA protein-targeting signal functioned autonomously in the absence of cytoplasmic factors that specifically recognize the targeting signals and deliver the preproteins to the MOM, (iii) the function of a cytoplasmic chaperone was required if the cytoplasmic domains of the C-TA proteins assumed an import-incompetent conformation, and intriguingly, (iv) the MOM-targeting signal of Bak, in the context of the Bak molecule, required activation by the interaction of its cytoplasmic domain with VDAC2 before MOM targeting.  相似文献   

9.
The conductivity of two photosynthetic protein–pigment complexes, a light harvesting 2 complex and a reaction center, was measured with an atomic force microscope capable of performing electrical measurements. Current–voltage measurements were performed on complexes embedded in their natural environment. Embedding the complexes in lipid bilayers made it possible to discuss the different conduction behaviors of the two complexes in light of their atomic structure.  相似文献   

10.
L Ramage  T Junne  K Hahne  T Lithgow    G Schatz 《The EMBO journal》1993,12(11):4115-4123
We have identified a 20 kDa yeast mitochondrial outer membrane protein (termed MAS20) which appears to function as a protein import receptor. We cloned, sequenced and physically mapped the MAS20 gene and found that the protein is homologous to the MOM19 import receptor from Neurospora crassa. MAS20 and MOM19 contain the sequence motif F-X-K-A-L-X-V/L, which is repeated several times with minor variations in the MAS70/MOM72 receptors. To determine how MAS20 functions together with the previously identified yeast receptor MAS70, we constructed yeast mutants lacking either one or both of the receptors. Deletion of either receptor alone had little or no effect on fermentative growth and only partially inhibited mitochondrial protein import in vivo. Deletion of both receptors was lethal. Deleting only MAS70 did not affect respiration; deleting only MAS20 caused loss of respiration, but respiration could be restored by overexpressing MAS70. Import of the F1-ATPase beta-subunit into isolated mitochondria was only partly inhibited by IgGs against either MAS20 or MAS70, but both IgGs inhibited import completely. We conclude that the two receptors have overlapping specificities for mitochondrial precursor proteins and that neither receptor is by itself essential.  相似文献   

11.
Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.  相似文献   

12.
The mitochondrial outer membrane contains a multi-subunit machinery responsible for the specific recognition and translocation of precursor proteins. This translocase of the outer membrane (TOM) consists of three receptor proteins, Tom20, Tom22 and Tom70, the channel protein Tom40, and several small Tom proteins. Single-particle electron microscopy analysis of the Neurospora TOM complex has led to different views with two or three stain-filled centers resembling channels. Based on biochemical and electron microscopy studies of the TOM complex isolated from yeast mitochondria, we have discovered the molecular reason for the different number of channel-like structures. The TOM complex from wild-type yeast contains up to three stain-filled centers, while from a mutant yeast selectively lacking Tom20, the TOM complex particles contain only two channel-like structures. From mutant mitochondria lacking Tom22, native electrophoresis separates an approximately 80 kDa subcomplex that consists of Tom40 only and is functional for accumulation of a precursor protein. We conclude that while Tom40 forms the import channels, the two receptors Tom22 and Tom20 are required for the organization of Tom40 dimers into larger TOM structures.  相似文献   

13.
The membrane topology of Om45 in the yeast mitochondrial outer membrane (OM) is under debate. Here, we confirm that Om45 is anchored to the OM from the intermembrane space (IMS) by its N-terminal hydrophobic segment. We show that import of Om45 requires the presequence receptors, Tom20 and Tom22, and the import channel of Tom40. Unlike any of the known OM proteins, Om45 import requires the TIM23 complex in the inner membrane, a translocator for presequence-containing proteins, and the membrane potential (ΔΨ). Therefore, Om45 is anchored to the OM via the IMS by a novel import pathway involving the TIM23 complex.  相似文献   

14.
In order for proteins to be imported into subcellular compartments, they must first traverse the organellar membranes. In mitochondria, hydrophilic protein channels in both the outer and inner membranes serve such a purpose. Recently, the channel protein of the outer mitochondrial membrane was identified to be Tom40. Tom40 is found in a high molecular weight complex termed the general import pore (GIP) complex where it is tightly associated with the receptor protein Tom22 along with Tom7, Tom6 and Tom5. Tom7 and Tom6 seem to modulate the dynamics of the GIP complex while Tom5 is involved in preprotein transfer from receptors to Tom40. The receptor proteins Tom70 and Tom20 associate with this complex in a weaker manner where they are involved in the initial recognition of preproteins. This review focuses on the identification and characterisation of the transport machinery of the outer mitochondrial membrane and how they are involved in the co-ordination and regulation of events required for the translocation of preproteins into mitochondria.  相似文献   

15.
Protein import into mitochondria involves several components of the mitochondrial outer and inner membranes as well as molecular chaperones located inside mitochondria. Here, we have investigated the effect of sulfhydryl group reagents on import of the in vitro transcribed/translated precursor of the F1 subunit of the ATP synthase (pF1) into Solanum tuberosum mitochondria. We have used a reducing agent, dithiothreitol (DTT), a membrane-permeant alkylating agent, N-ethylmaleimide (NEM), a non-permeant alkylating agent, 3-(N-maleimidopropionyl)biocytin (MPB), an SH-group specific agent and cross-linker 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) as well as an oxidizing cross-linker, copper sulfate. DTT stimulated the mitochondrial protein import, whereas NEM, MPB, DTNB and Cu2+ were inhibitory. Inhibition by Cu2+ could be reversed by addition of DTT. The efficiency of inhibition was higher in energized mitochondria than in non-energized. We have dissected the effect of the SH-group reagents on binding, unfolding and transport of the precursor into mitochondria. Our results demonstrated that the inhibitory effect of NEM, DTNB and Cu2+ on the efficiency of import was not due to the interaction of the SH-group reagents with import receptors. Modification of pF1 with NEM prior to the import resulted in stimulation of import, whereas DTNB and Cu2+ were inhibitory. NEM, MPB, DTNB and Cu2+ inhibited import of the NEM-modified pF1 into intact mitochondria. Import of pF1 through a receptor-independent bypass-route as well as import into mitoplasts were sensitive to DTT, NEM, MPB, DTNB and Cu2+ in a similar manner as import into mitochondria. As MPB does not cross the inner membrane, these results indicated that redox and conformational status of SH groups located on the outer surface of the inner mitochondrial membrane were essential for protein import.  相似文献   

16.
17.
The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase.  相似文献   

18.
19.
The majority of mitochondrial proteins are nuclear-encoded and need to be transported into the mitochondria, including the proteins in the outer mitochondrial membrane. For β-barrel proteins, the preproteins are initially recognized and imported by the TOM complex, then shuttled to the SAM complex via small Tim proteins. For ⍺-helical proteins, some preproteins are recognized by the TOM complex and imported into the membrane by the MIM complex. In recent years multiple structures of the TOM complex and the SAM complex have been reported, increasing our understanding of the mechanism of protein biogenesis in the outer mitochondrial membrane.  相似文献   

20.
Most cellular stress responses converge on the mitochondria. Consequently, the mitochondria must rapidly respond to maintain cellular homeostasis and physiological demands by fine-tuning a plethora of mitochondria-associated processes. The outer mitochondrial membrane (OMM) proteins are central to mediating mitochondrial dynamics, coupled with continuous fission and fusion. These OMM proteins also have vital roles in controlling mitochondrial quality and serving as mitophagic receptors for autophagosome enclosure during mitophagy. Mitochondrial fission segregates impaired mitochondria in smaller sizes from the mother mitochondria and may favor mitophagy for eliminating damaged mitochondria. Conversely, mitochondrial fusion mixes dysfunctional mitochondria with healthy ones to repair the damage by diluting the impaired components and consequently prevents mitochondrial clearance via mitophagy. Despite extensive research efforts into deciphering the interplay between fission–fusion and mitophagy, it is still not clear whether mitochondrial fission essentially precedes mitophagy. In this review, we summarize recent breakthroughs concerning OMM research, and dissect the functions of these proteins in mitophagy from their traditional roles in fission–fusion dynamics, in response to distinct context, at the intersection of the OMM platform. These insights into the OMM proteins in mechanistic researches would lead to new aspects of mitochondrial quality control and better understanding of mitochondrial homeostasis intimately tied to pathological impacts.Subject terms: Macroautophagy, Protein quality control  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号