首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germ-line alterations in BRCA1 are associated with an increased susceptibility to breast and ovarian cancer. The BRCA1 protein has been implicated in multiple cellular functions. We have recently demonstrated that BRCA1 reduces acetyl-CoA-carboxylase alpha (ACCA) activity through its phospho-dependent binding to ACCA, and further established that the phosphorylation of the Ser1263 of ACCA is required for this interaction. Here, to gain more insight into the cellular conditions that trigger the BRCA1/ACCA interaction, we designed an anti-pSer1263 antibody and demonstrated that the Ser1263 of ACCA is phosphorylated in vivo, in a cell cycle-dependent manner. We further showed that the interaction between BRCA1 and ACCA is regulated during cell cycle progression. Taken together, our findings reveal a novel mechanism of regulation of ACCA distinct from the previously described phosphorylation of Ser79, and provide new insights into the control of lipogenesis through the cell cycle.  相似文献   

2.
The tumour suppressor gene BRCA1 encodes a 220 kDa protein that participates in multiple cellular processes. The BRCA1 protein contains a tandem of two BRCT repeats at its carboxy-terminal region. The majority of disease-associated BRCA1 mutations affect this region and provide to the BRCT repeats a central role in the BRCA1 tumour suppressor function. The BRCT repeats have been shown to mediate phospho-dependant protein-protein interactions. They recognize phosphorylated peptides using a recognition groove that spans both BRCT repeats. We previously identified an interaction between the tandem of BRCA1 BRCT repeats and ACCA, which was disrupted by germ line BRCA1 mutations that affect the BRCT repeats. We recently showed that BRCA1 modulates ACCA activity through its phospho-dependent binding to ACCA. To delineate the region of ACCA that is crucial for the regulation of its activity by BRCA1, we searched for potential phosphorylation sites in the ACCA sequence that might be recognized by the BRCA1 BRCT repeats. Using sequence analysis and structure modelling, we proposed the Ser1263 residue as the most favourable candidate among six residues, for recognition by the BRCA1 BRCT repeats. Using experimental approaches, such as GST pull-down assay with Bosc cells, we clearly showed that phosphorylation of only Ser1263 was essential for the interaction of ACCA with the BRCT repeats. We finally demonstrated by immunoprecipitation of ACCA in cells, that the whole BRCA1 protein interacts with ACCA when phosphorylated on Ser1263.  相似文献   

3.
4.
Recent studies have demonstrated that aldo-keto reductase family 1 B10 (AKR1B10), a novel protein overexpressed in human hepatocellular carcinoma and non-small cell lung carcinoma, may facilitate cancer cell growth by detoxifying intracellular reactive carbonyls. This study presents a novel function of AKR1B10 in tumorigenic mammary epithelial cells (RAO-3), regulating fatty acid synthesis. In RAO-3 cells, Sephacryl-S 300 gel filtration and DEAE-Sepharose ion exchange chromatography demonstrated that AKR1B10 exists in two distinct forms, monomers (approximately 40 kDa) bound to DEAE-Sepharose column and protein complexes (approximately 300 kDa) remaining in flow-through. Co-immunoprecipitation with AKR1B10 antibody and protein mass spectrometry analysis identified that AKR1B10 associates with acetyl-CoA carboxylase-alpha (ACCA), a rate-limiting enzyme of de novo fatty acid synthesis. This association between AKR1B10 and ACCA proteins was further confirmed by co-immunoprecipitation with ACCA antibody and pulldown assays with recombinant AKR1B10 protein. Intracellular fluorescent studies showed that AKR1B10 and ACCA proteins co-localize in the cytoplasm of RAO-3 cells. More interestingly, small interfering RNA-mediated AKR1B10 knock down increased ACCA degradation through ubiquitination-proteasome pathway and resulted in >50% decrease of fatty acid synthesis in RAO-3 cells. These data suggest that AKR1B10 is a novel regulator of the biosynthesis of fatty acid, an essential component of the cell membrane, in breast cancer cells.  相似文献   

5.
BACH1 (BRCA1-associated C-terminal helicase 1), the product of the BRIP1 {BRCA1 [breast cancer 1, early onset]-interacting protein C-terminal helicase 1; also known as FANCJ [FA-J (Fanconi anaemia group J) protein]} gene mutated in Fanconi anaemia patients from complementation group J, has been implicated in DNA repair and damage signalling. BACH1 exerts DNA helicase activities and physically interacts with BRCA1 and MLH1 (mutL homologue 1), which differentially control DNA DSB (double-strand break) repair processes. The present study shows that BACH1 plays a role in both HR (homologous recombination) and MMEJ (microhomology-mediated non-homologous end-joining) and reveals discrete mechanisms underlying modulation of these pathways. Our results indicate that BACH1 stimulates HR, which depends on the integrity of the helicase domain. Disruption of the BRCA1-BACH1 complex through mutation of BACH1 compromised errorfree NHEJ (non-homologous end-joining) and accelerated error-prone MMEJ. Conversely, molecular changes in BACH1 abrogating MLH1 binding interfered neither with HR nor with MMEJ. Importantly, MMEJ is a mutagenic DSB repair pathway, which is derepressed in hereditary breast and ovarian carcinomas. Since BRCA1 and BACH1 mutations targeting the BRCA1-BACH1 interaction have been associated with breast cancer susceptibility, the results of the present study thus provide evidence for a novel role of BACH1 in tumour suppression.  相似文献   

6.
7.
8.
9.
BRCA1 physically and functionally interacts with ATF1   总被引:5,自引:0,他引:5  
  相似文献   

10.
BACH1 (also known as FANCJ and BRIP1) is a DNA helicase that directly interacts with the C-terminal BRCT repeat of the breast cancer susceptibility protein BRCA1. Previous biochemical and functional analyses have suggested a role for the BACH1 homolog in Caenorhabditis elegans during DNA replication. Here, we report the association of BACH1 with a distinct BRCA1/BRCA2-containing complex during the S phase of the cell cycle. Depletion of BACH1 or BRCA1 using small interfering RNAs results in delayed entry into the S phase of the cell cycle. Such timely progression through S phase requires the helicase activity of BACH1. Importantly, cells expressing a dominant negative mutation in BACH1 that results in a defective helicase displayed increased activation of DNA damage checkpoints and genomic instability. BACH1 helicase is silenced during the G(1) phase of the cell cycle and is activated through a dephosphorylation event as cells enter S phase. These results point to a critical role for BACH1 helicase activity not only in the timely progression through the S phase but also in maintaining genomic stability.  相似文献   

11.
Genetic heterogeneity in hereditary breast cancer: role of BRCA1 and BRCA2.   总被引:7,自引:4,他引:3  
The common hereditary forms of breast cancer have been largely attributed to the inheritance of mutations in the BRCA1 or BRCA2 genes. However, it is not yet clear what proportion of hereditary breast cancer is explained by BRCA1 and BRCA2 or by some other unidentified susceptibility gene(s). We describe the proportion of hereditary breast cancer explained by BRCA1 or BRCA2 in a sample of North American hereditary breast cancers and assess the evidence for additional susceptibility genes that may confer hereditary breast or ovarian cancer risk. Twenty-three families were identified through two high-risk breast cancer research programs. Genetic analysis was undertaken to establish linkage between the breast or ovarian cancer cases and markers on chromosomes 17q (BRCA1) and 13q (BRCA2). Mutation analysis in the BRCA1 and BRCA2 genes was also undertaken in all families. The pattern of hereditary cancer in 14 (61%) of the 23 families studied was attributed to BRCA1 by a combination of linkage and mutation analyses. No families were attributed to BRCA2. Five families (22%) provided evidence against linkage to both BRCA1 and BRCA2. No BRCA1 or BRCA2 mutations were detected in these five families. The BRCA1 or BRCA2 status of four families (17%) could not be determined. BRCA1 and BRCA2 probably explain the majority of hereditary breast cancer that exists in the North American population. However, one or more additional genes may yet be found that explain some proportion of hereditary breast cancer.  相似文献   

12.
Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least 11 complementation groups (A, B, C, D1, D2, E, F, G, I, J, and L), and eight FA genes have been cloned. The FANCD1 gene is identical to the breast cancer susceptibility gene, BRCA2. The FA proteins cooperate in a common pathway, but the function of BRCA2/FANCD1 in this pathway remains unknown. Here we show that monoubiquitination of FANCD2, which is activated by DNA damage, is required for targeting of FANCD2 to chromatin, where it interacts with BRCA2. FANCD2-Ub then promotes BRCA2 loading into a chromatin complex. FANCD2(-/-) cells are deficient in the assembly of DNA damage-inducible BRCA2 foci and in chromatin loading of BRCA2. Functional complementation with the FANCD2 cDNA restores BRCA2 foci and its chromatin loading following DNA damage. BRCA2(-/-) cells expressing a carboxy-terminal truncated BRCA2 protein form IR-inducible BRCA2 and FANCD2 foci, but these foci fail to colocalize. Functional complementation of these cells with wild-type BRCA2 restores the interaction of BRCA2 and FANCD2. The C terminus of BRCA2 is therefore required for the functional interaction of BRCA2 and FANCD2 in chromatin. Taken together, our results demonstrate that monoubiquitination of FANCD2, which is regulated by the FA pathway, promotes BRCA2 loading into chromatin complexes. These complexes appear to be required for normal homology-directed DNA repair.  相似文献   

13.
BRCA2 is a tumor suppressor gene that when mutated confers an increased susceptibility to developing breast and prostate carcinoma. Besides its role in mediating DNA repair, new evidence suggests that BRCA2 may also play a role in suppressing cancer cell growth. Because altered interactions between neoplastic cells and the surrounding extracellular matrix (ECM) play a pivotal role in unchecked cancer cell proliferation and metastatic progression, we hypothesized that the ECM may have an effect in BRCA2 expression. By using normal and prostate carcinoma cell lines, we demonstrated that although normal cells transiently increase BRCA2 protein levels when adhering to the ECM protein collagen type I (COL1), carcinoma cells exhibit a significant reduction in BRCA2 protein. This aberrant effect is independent from de novo protein synthesis and results from COL1-beta(1) integrin signaling through phosphatidylinositol (PI) 3-kinase leading to BRCA2 ubiquitination and degradation in the proteasome. BRCA2 protein depletion after cancer cell adhesion to COL1 or in small RNA interference assays triggers new DNA synthesis, a trophic effect that is abrogated by recombinant BRCA2 expression. Blocking or inhibiting beta(1) integrin, PI 3-kinase, or proteasome activity all have a negative effect on COL1-mediated DNA synthesis in cancer cells. In normal cells, the transient increase in BRCA2 expression is independent from beta(1) integrin or PI 3-kinase and has no effect in cell proliferation. In summary, these results unravel a novel mechanism whereby prostate carcinoma cell proliferation is enhanced by the down-regulation of BRCA2 expression when interacting with COL1, a major component of the ECM at osseous metastatic sites.  相似文献   

14.
15.
16.
The gene BRCA2, first identified as a breast cancer susceptibility locus in humans, encodes a protein involved in DNA repair in mammalian cells and mutations in this gene confer increased risk of breast cancer. Here we report a functional characterisation of a Trypanosoma brucei BRCA2 (TbBRCA2) orthologue and show that the protein interacts directly with TbRAD51. A further protein-protein interaction screen using TbBRCA2 identified other interacting proteins, including a trypanosome orthologue of CDC45 which is involved in initiation and progression of the replication fork complex during DNA synthesis. Deletion of the TbBRCA2 gene retards cell cycle progression during S-phase as judged by increased incorporation of BrdU and an increased percentage of cells with one nucleus and two kinetoplasts. These results provide insights into the potential role played by BRCA2 in DNA replication and reveal a novel interaction that couples replication and recombination in maintaining integrity of the genome.  相似文献   

17.
18.
Shen Y  Tong L 《Biochemistry》2008,47(21):5767-5773
The tandem BRCA1 C-terminal (BRCT) domains are phospho-serine/threonine recognition modules essential for the function of BRCA1. Recent studies suggest that acetyl-CoA carboxylase 1 (ACC1), an enzyme with crucial roles in de novo fatty acid biosynthesis and lipogenesis and essential for cancer cell survival, may be a novel binding partner for BRCA1, through interactions with its BRCT domains. We report here the crystal structure at 3.2 A resolution of human BRCA1 BRCT domains in complex with a phospho-peptide from human ACC1 (p-ACC1 peptide, with the sequence 1258-DSPPQ-pS-PTFPEAGH-1271), which provides molecular evidence for direct interactions between BRCA1 and ACC1. The p-ACC1 peptide is bound in an extended conformation, located in a groove between the tandem BRCT domains. There are recognizable and significant structural differences to the binding modes of two other phospho-peptides to these domains, from BACH1 and CtIP, even though they share a conserved pSer-Pro-(Thr/Val)-Phe motif. Our studies establish a framework for understanding the regulation of lipid biosynthesis by BRCA1 through its inhibition of ACC1 activity, which could be a novel tumor suppressor function of BRCA1.  相似文献   

19.
20.
BRCA1 interacts in vivo with a novel protein, BACH1, a member of the DEAH helicase family. BACH1 binds directly to the BRCT repeats of BRCA1. A BACH1 derivative, bearing a mutation in a residue that was essential for catalytic function in other helicases, interfered with normal double-strand break repair in a manner that was dependent on its BRCA1 binding function. Thus, BACH1/BRCA1 complex formation contributes to a key BRCA1 activity. In addition, germline BACH1 mutations affecting the helicase domain were detected in two early-onset breast cancer patients and not in 200 matched controls. Thus, it is conceivable that, like BRCA1, BACH1 is a target of germline cancer-inducing mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号