首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Liu W  Wen W  Wei Z  Yu J  Ye F  Liu CH  Hardie RC  Zhang M 《Cell》2011,145(7):1088-1101
INAD is a scaffolding protein that regulates signaling in Drosophila photoreceptors. One of its PDZ domains, PDZ5, cycles between reduced and oxidized forms in response to light, but it is unclear how light affects its redox potential. Through biochemical and structural studies, we show that the redox potential of PDZ5 is allosterically regulated by its interaction with another INAD domain, PDZ4. Whereas isolated PDZ5 is stable in the oxidized state, formation of a PDZ45 "supramodule" locks PDZ5 in?the reduced state by raising the redox potential of?its Cys606/Cys645 disulfide bond by ~330?mV. Acidification, potentially mediated via light and PLCβ-mediated hydrolysis of PIP(2), disrupts the interaction between PDZ4 and PDZ5, leading to PDZ5 oxidation and dissociation from the TRP Ca(2+) channel, a key component of fly visual signaling. These results show that scaffolding proteins can actively modulate the intrinsic redox potentials of their disulfide bonds to exert regulatory roles in signaling.  相似文献   

2.
Dynamic regulation of the INAD signaling scaffold becomes crystal clear   总被引:1,自引:0,他引:1  
Montell C 《Cell》2007,131(1):19-21
PDZ domains are common building blocks of scaffold proteins that enhance specificity and speed in signal transduction cascades. Although PDZ modules are often viewed as passive participants, Mishra et al. (2007) now show that a PDZ domain in INAD, a scaffold protein in photoreceptor cells of the fruit fly, undergoes a light-dependent conformational change, which has important consequences for signaling and animal behavior.  相似文献   

3.
Drosophila INAD, which contains five tandem protein interaction PDZ domains, plays an important role in the G protein-coupled visual signal transduction. Mutations in InaD alleles display mislocalization of signaling molecules of phototransduction which include the essential effector, phospholipase C-beta (PLC-beta), which is also known as NORPA. The molecular and biochemical details of this functional link are unknown. We report that INAD directly binds to NORPA via two terminally positioned PDZ1 and PDZ5 domains. PDZ1 binds to the C-terminus of NORPA, while PDZ5 binds to an internal region overlapping with the G box-homology region (a putative G protein-interacting site). The NORPA proteins lacking binding sites, which display normal basal PLC activity, can no longer associate with INAD in vivo. These truncations cause significant reduction of NORPA protein expression in rhabdomeres and severe defects in phototransduction. Thus, the two terminal PDZ domains of INAD, through intermolecular and/or intramolecular interactions, are brought into proximity in vivo. Such domain organization allows for the multivalent INAD-NORPA interactions which are essential for G protein-coupled phototransduction.  相似文献   

4.
Drosophila inactivation no afterpotential D (INAD) is a PDZ domain-containing scaffolding protein that tethers components of the phototransduction cascade to form a supramolecular signaling complex. Here, we report the identification of eight INAD phosphorylation sites using a mass spectrometry approach. PDZ1, PDZ2, and PDZ4 each harbor one phosphorylation site, three phosphorylation sites are located in the linker region between PDZ1 and 2, one site is located between PDZ2 and PDZ3, and one site is located in the N-terminal region. Using a phosphospecific antibody, we found that INAD phosphorylated at Thr170/Ser174 was located within the rhabdomeres of the photoreceptor cells, suggesting that INAD becomes phosphorylated in this cellular compartment. INAD phosphorylation at Thr170/Ser174 depends on light, the phototransduction cascade, and on eye-Protein kinase C that is attached to INAD via one of its PDZ domains.  相似文献   

5.
In Drosophila photoreceptors, phospholipase C (PLC) and other signalling components form multiprotein structures through the PDZ scaffold protein INAD. Association between PLC and INAD is important for termination of responses to light; the underlying mechanism is, however, unclear. Here we report that the maintenance of large amounts of PLC in the signalling membranes by association with INAD facilitates response termination, and show that PLC functions as a GTPase-activating protein (GAP). The inactivation of the G protein by its target, the PLC, is crucial for reliable production of single-photon responses and for the high temporal and intensity resolution of the response to light.  相似文献   

6.
INAD is a scaffolding protein containing five PSD95/dlg/zonular occludens-1 (PDZ) domains that tether NORPA (phospholipase Cbeta(4)), the TRP calcium channel, and eye-PKC in Drosophila photoreceptors. We previously showed that eye-PKC interacted with the second PDZ domain (PDZ2) of INAD. Sequence comparison with a prototypical type I PDZ domain predicts that PDZ2 is the best candidate among the five PDZ domains to recognize eye-PKC that contains a type I PDZ ligand, Ile-Thr-Ile-Ile, at its carboxyl terminus. Replacement of Ile(-3) in eye-PKC with charged residues resulted in a drastic reduction of the PDZ2 interaction. Substitution of a conserved His with Arg at the second alpha-helix of PDZ2 led to a reduced binding; however, a Leu replacement resulted in an enhanced eye-PKC association. We isolated and sequenced the InaD gene. The coding sequence of InaD contains nine exons spanning 3 kilobases. Translation of coding sequences from three wild-type alleles revealed three SNPs affecting residues, 282, 319, and 333 of INAD. These polymorphisms are localized in PDZ2. Interestingly, we found two of three PDZ2 variants displayed a greater affinity for eye-PKC. In summary, we evaluated the molecular basis of the eye-PKC and PDZ2 association by mutational analysis and concluded that PDZ2 of INAD is a type I domain important for the eye-PKC interaction.  相似文献   

7.
The rapid activation and feedback regulation of many G protein signaling cascades raises the possibility that the critical signaling proteins may be tightly coupled. Previous studies show that the PDZ domain containing protein INAD, which functions in Drosophila vision, coordinates a signaling complex by binding directly to the light-sensitive ion channel, TRP, and to phospholipase C (PLC). The INAD signaling complex also includes rhodopsin, protein kinase C (PKC), and calmodulin, though it is not known whether these proteins bind to INAD. In the current work, we show that rhodopsin, calmodulin, and PKC associate with the signaling complex by direct binding to INAD. We also found that a second ion channel, TRPL, bound to INAD. Thus, most of the proteins involved directly in phototransduction appear to bind to INAD. Furthermore, we found that INAD formed homopolymers and the homomultimerization occurred through two PDZ domains. Thus, we propose that the INAD supramolecular complex is a higher order signaling web consisting of an extended network of INAD molecules through which a G protein–coupled cascade is tethered.  相似文献   

8.
The light response in Drosophila photoreceptor cells is mediated by a series of proteins that assemble into a macromolecular complex referred to as the signalplex. The central player in the signalplex is inactivation no afterpotential D (INAD), a protein consisting of a tandem array of five PDZ domains. At least seven proteins bind INAD, including the transient receptor potential (TRP) channel, which depends on INAD for localization to the phototransducing organelle, the rhabdomere. However, the determinants required for localization of INAD are not known. In this work, we showed that INAD was required for retention rather than targeting of TRP to the rhabdomeres. In addition, we demonstrated that TRP bound to INAD through the COOH terminus, and this interaction was required for localization of INAD. Other proteins that depend on INAD for localization, phospholipase C and protein kinase C, also mislocalized. However, elimination of any other member of the signalplex had no impact on the spatial distribution of INAD. A direct interaction between TRP and INAD did not appear to have a role in the photoresponse independent of localization of multiple signaling components. Rather, the primary function of the TRP/ INAD complex is to form the core unit required for localization of the signalplex to the rhabdomeres.  相似文献   

9.
Visual transduction in the compound eye of flies is a well-established model system for the study of G protein-coupled transduction pathways. Pivotal components of this signaling pathway, including the principal light-activated Ca(2+) channel transient receptor potential, an eye-specific protein kinase C, and the norpA-encoded phospholipase Cbeta, are assembled into a supramolecular signaling complex by the modular PDZ domain protein INAD. We have used immunoprecipitation assays to study the interaction of the heterotrimeric visual G protein with this INAD signaling complex. Light-activated Galpha(q)- guanosine 5'-O-(thiotriphosphate) and AlF(4)(-)-activated Galpha(q), but not Gbetagamma, form a stable complex with the INAD signaling complex. This interaction requires the presence of norpA-encoded phospholipase Cbeta, indicating that phospholipase Cbeta is the target of activated Galpha(q). Our data establish that the INAD signaling complex is a light-activated target of the phototransduction pathway, with Galpha(q) forming a molecular on-off switch that shuttles the visual signal from activated rhodopsin to INAD-linked phospholipase Cbeta.  相似文献   

10.
磷脂酶C β (PLCβ)在G蛋白偶联受体 (GPCR)介导的细胞信号转导中发挥重要作用. 通过水解磷脂酰肌醇4,5二磷酸 (PIP2),磷脂酶C β可以产生3种重要的第二信使分子:二乙酰甘油 (DAG)、三磷酸肌醇 (IP3)和质子. 在果蝇中,磷脂酶C β通过它的羧基末端盘状同源区域结合模块 (PBM)与盘状同源区域 (PDZ)支架蛋白-失活无后电位D蛋白 (INAD)相互作用,从而调节果蝇的光信号传导 . 在哺乳动物中,磷脂酶C β家族有4个亚型,每1个亚型的羧基末端都有1个典型的盘状同源区域结合模块. 这一结构特点提示我们,磷脂酶C β可能通过其羧基末端的盘状同源区域结合模块与盘状同源区域支架蛋白相互作用,进而调节它们自身的细胞定位和功能. 然而,目前仍对哺乳动物磷脂酶C β家族的盘状同源区域结合蛋白知之甚少. 本文运用分析型凝胶过滤和等温滴定量热技术,系统地研究了不同磷脂酶Cβ亚型的羧基末端盘状同源区域结合模块与不同盘状同源区域蛋白质的结合. 结果表明,磷脂酶Cβ2的羧基末端盘状同源区域结合模块,可以特异地与含有4个盘状同源区域的支架蛋白-盘状同源区域蛋白1 (PDZK1)以2∶1的方式相互结合. 进一步的测定显示,磷脂酶C β2羧基末端盘状同源区域结合模块在盘状同源区域蛋白1上的结合位点为第1和第3个盘状同源区域,而它们与磷脂酶Cβ2的解离常数分别为11.8±3.4 μmol/L 和33.3±8.7 μmol/L.  相似文献   

11.
Six protein kinase C (PKC) genes are present in Drosophila, comprising two classical PKCs (PKC53E and eye-PKC), two novel PKCs (PKC98E and PKCdelta), an atypical PKC (DaPKC), and a PKC-related kinase. Loss of function alleles affecting DaPKC and eye-PKC are available and their mutant phenotypes have been characterized. DaPKC is essential for early embryonic development because it regulates cell polarity and asymmetric cell division. Eye-PKC plays a role in the regulation of visual signaling, a G-protein coupled phospholipase Cbeta-mediated cascade. Both eye-PKC and DaPKC are differentially localized through tethering to multimolecular complexes. DaPKC interacts with partitioning-defective 3 (Par-3) and Par-6 proteins, which contain PDZ (PSD95, DLG, ZO-1) domains. Similarly, eye-PKC is anchored to a PDZ domain containing scaffolding protein INAD. Characterization of these two PKCs in Drosophila revealed a universal mechanism by which PKC is tethered to specific protein complexes for participation in distinct signal transduction processes.  相似文献   

12.
The Na(+)/H(+) exchanger regulatory factor-1 (NHERF1) is a molecular scaffold important for the signaling of the G-protein coupled receptor for the parathyroid hormone (PTH1R). The two PDZ (PSD-95, Discs-large, ZO1) domains of NHERF1 through association with the C-termini of PTH1R and phospholipase C enhance the signaling pathway associated with PTH. To examine these interactions, we have produced the individual PDZ1 and PDZ2 domains as well as the tandem PDZ1-PDZ2 domains (PDZ12) of NHERF1 and have characterized the binding affinities of the C-terminal motifs of PTH1R and PLCbeta using fluorescence anisotropy. Circular dichroism indicates that the PDZ1 and PDZ2 are properly folded. Based on fluorescence anisotropy we find that the C-terminus of PTH1R, containing ETVM, has similar affinities (approximately 10 microm) for both PDZ1 and PDZ2. The PTH1R displayed reduced binding affinity for the tandem PDZ12 (16 microm) compared with the individual domains or a solution of equal molar concentrations of PDZ1 and PDZ2 (5.8 microm), suggesting negative cooperativity between the PDZ domains or intervening region. The C-termini of PLCbeta (both beta1 and beta2 isozymes were examined, containing DTPL and ESRL, respectively) displayed a diminished affinity for PDZ2 (approximately 30 microm) over that of PDZ1 (approximately 8 microm). Finally, we demonstrate trans PDZ1-PDZ2 association that is enhanced in the presence of the C-terminus of PTH1R or PLCbeta, suggesting oligomerization of NHERF as a mode for enhancing the signaling associated with PTH.  相似文献   

13.
The very C-terminus of c-Src is a ligand for PDZ domains. In a screen for PDZ domains that interact with c-Src, we identified one of the PDZ domains of the Ligand-of-Numb protein X1 (LNX1), a multiple PDZ domain scaffold and RING type E3 ubiquitin ligase. We demonstrate that the interaction of c-Src with LNX1 depends on the C-terminal PDZ ligand of c-Src. Furthermore, we show that c-Src phosphorylates LNX1. Moreover, c-Src itself is ubiquitinated by LNX1, suggesting an interdependent regulation of c-Src and LNX1.  相似文献   

14.
Wu H  Feng W  Chen J  Chan LN  Huang S  Zhang M 《Molecular cell》2007,28(5):886-898
Multiple PDZ domain scaffold protein Par-3 and phosphoinositides (PIPs) are required for polarity in diverse cell types. We show that the second PDZ domain of Par-3 binds to phosphatidylinositol (PI) lipid membranes with high affinity. We further demonstrate that a large subset of PDZ domains in mammalian genomes are capable of binding to PI lipid membranes, indicating that lipid binding is the second most prevalent interaction mode of PDZ domains known to date. The biochemical and structural basis of Par-3 PDZ2-mediated membrane interaction is characterized in detail. The membrane binding capacity of Par-3 PDZ2 is critical for epithelial cell polarization. Interestingly, the lipid phosphatase PTEN directly binds to the third PDZ domain of Par-3. The concatenation of the PIP-binding PDZ2 and the lipid phosphatase PTEN-binding PDZ3 endows Par-3 as an ideal scaffold protein for integrating PIP signaling events during cellular polarization.  相似文献   

15.
βPIX (p21-activated kinase interacting exchange factor) and Shank/ProSAP protein form a complex acting as a protein scaffold that integrates signaling pathways and regulates postsynaptic structure. Complex formation is mediated by the C-terminal PDZ binding motif of βPIX and the Shank PDZ domain. The coiled-coil (CC) domain upstream of the PDZ binding motif allows multimerization of βPIX, which is important for its physiological functions. We have solved the crystal structure of the βPIX CC-Shank PDZ complex and determined the stoichiometry of complex formation. The βPIX CC forms a 76-Å-long parallel CC trimer. Despite the fact that the βPIX CC exposes three PDZ binding motifs in the C-termini, the βPIX trimer associates with a single Shank PDZ. One of the C-terminal ends of the CC forms an extensive β-sheet interaction with the Shank PDZ, while the other two ends are not involved in ligand binding and form random coils. The two C-terminal ends of βPIX have significantly lower affinity than the first PDZ binding motif due to the steric hindrance in the C-terminal tails, which results in binding of a single PDZ domain to the βPIX trimer. The structure shows canonical class I PDZ binding with a β-sheet interaction extending to position − 6 of βPIX. The βB-βC loop of Shank PDZ undergoes a conformational change upon ligand binding to form the β-sheet interaction and to accommodate the bulky side chain of Trp − 5. This structural study provides a clear picture of the molecular recognition of the PDZ ligand and the asymmetric association of βPIX CC and Shank PDZ.  相似文献   

16.
The functional localization of potassium inward rectifiers is regulated by SAP97, a PDZ membrane-associated guanylate kinase protein. We describe here an investigation of the conformation of the PDZ domain region of SAP97 PDZ1-3. The NMR and SAXS data reveal conformational dynamics. The NMR data show minimal interdomain contacts, with the U3 linker region between PDZ2 and PDZ3 being largely unstructured. Shape analysis of the SAXS profiles revealed a dumbbell for the PDZ12 double domain. An overall elongated, asymmetric shape comprised of two to three distinct components characterizes the triple domain PDZ1-3. In addition, rigid body modeling shows that the representative average shape does not provide the full picture and that the data for the triple domain are consistent with large variations, suggesting significant conformational flexibility. However, the dynamics appears to be restricted as PDZ3 is located essentially within approximately 40 A from PDZ12. We also show that the Kir2.1 cytoplasmic domain interacts with all three PDZ domains but with a clear preference for PDZ2 even in the presence of the U3 region. We speculate that the restricted dynamics and preferential Kir2.1 binding to PDZ2 are features that enable SAP97 to function as a scaffold protein, allowing other proteins each to bind to the other two PDZ domains in sufficient proximity to yield productive channelosomes.  相似文献   

17.
Allostery is commonly described as a functional connection between two distant sites in a protein, where a binding event at one site alters affinity at the other. Here, we review the conformational dynamics that encode an allosteric switch in the PDZ domain of Par-6, which is a scaffold protein that organizes other proteins into a complex required to initiate and maintain cell polarity. NMR measurements revealed that the PDZ domain samples an evolutionarily conserved unfolding intermediate allowing rearrangement of two adjacent loop residues that control ligand binding affinity. Cdc42 binding to Par-6 creates a novel interface between the PDZ domain and the adjoining CRIB motif that stabilizes the high-affinity PDZ conformation. Thermodynamic and kinetic studies suggest that partial PDZ unfolding is an integral part of the Par-6 switching mechanism. The Par-6 CRIB-PDZ module illustrates two important structural aspects of protein evolution: the interface between adjacent domains in the same protein can give rise to allosteric regulation, and thermodynamic stability may be sacrificed to increase the sampling frequency of an unfolding intermediate required for conformational switching.  相似文献   

18.
A G Lau  R A Hall 《Biochemistry》2001,40(29):8572-8580
PDZ domains bind to the carboxyl-termini of target proteins, and some PDZ domains are capable of oligomerization to facilitate the formation of intracellular signaling complexes. The Na(+)/H(+) exchanger regulatory factor (NHERF-1; also called "EBP50") and its relative NHERF-2 (also called "E3KARP", "SIP-1", and "TKA-1") both have two PDZ domains. We report here that the PDZ domains of NHERF-1 and NHERF-2 bind specifically to each other but not to other PDZ domains. Purified NHERF-2 PDZ domains associate with each other robustly in the absence of any associated proteins, but purified NHERF-1 PDZ domains associate with each other only weakly when examined alone. The oligomerization of the NHERF-1 PDZ domains is greatly facilitated when they are bound with carboxyl-terminal ligands, such as the carboxyl-termini of the beta(2)-adrenergic receptor or the platelet-derived growth factor receptor. Oligomerization of full-length NHERF-1 is also enhanced by mutation of serine 289 to aspartate (S289D), which mimics the phosphorylated form of NHERF-1. Co-immunoprecipitation experiments with differentially tagged versions of the NHERF proteins reveal that NHERF-1 and NHERF-2 form homo- and hetero-oligomers in a cellular context. A point-mutated version of NHERF-1 (S289A), which cannot be phosphorylated on serine 289, exhibits a reduced capacity for co-immunoprecipitation from cells. These studies reveal that both NHERF-1 and NHERF-2 can oligomerize, which may facilitate NHERF-mediated formation of cellular signaling complexes. These studies furthermore reveal that oligomerization of NHERF-1, but not NHERF-2, is highly regulated by association with other proteins and by phosphorylation.  相似文献   

19.
Single‐domain allostery has been postulated to occur through intramolecular pathways of signaling within a protein structure. We had previously investigated these pathways by introducing a local thermal perturbation and analyzed the anisotropic propagation of structural changes throughout the protein. Here, we develop an improved approach, the Rotamerically Induced Perturbation (RIP), that identifies strong couplings between residues by analyzing the pathways of heat‐flow resulting from thermal excitation of rotameric rotations at individual residues. To explore the nature of these couplings, we calculate the complete coupling maps of 5 different PDZ domains. Although the PDZ domain is a well conserved structural fold that serves as a scaffold in many protein–protein complexes, different PDZ domains display unique patterns of conformational flexibility in response to ligand binding: some show a significant shift in a set of α‐helices, while others do not. Analysis of the coupling maps suggests a simple relationship between the computed couplings and observed conformational flexibility. In domains where the α‐helices are rigid, we find couplings of the α‐helices to the body of the protein, whereas in domains having ligand‐responsive α‐helices, no couplings are found. This leads to a model where the α‐helices are intrinsically dynamic but can be damped if sidechains interact at key tertiary contacts. These tertiary contacts correlate to high covariation contacts as identified by the statistical coupling analysis method. As these dynamic modules are exploited by various allosteric mechanisms, these tertiary contacts have been conserved by evolution.  相似文献   

20.
In the Drosophila visual cascade, the transient receptor potential (TRP) calcium channel, phospholipase Cbeta (no-receptor-potential A), and an eye-specific isoform of protein kinase C (eye-PKC) comprise a multimolecular signaling complex via their interaction with the scaffold protein INAD. Previously, we showed that the interaction between INAD and eye-PKC is a prerequisite for deactivation of a light response, suggesting eye-PKC phosphorylates proteins in the complex. To identify substrates of eye-PKC, we immunoprecipitated the complex from head lysates using anti-INAD antibodies and performed in vitro kinase assays. Wild-type immunocomplexes incubated with [(32)P]ATP revealed phosphorylation of TRP and INAD. In contrast, immunocomplexes from inaC mutants missing eye-PKC, displayed no phosphorylation of TRP or INAD. We also investigated protein phosphatases that may be involved in the dephosphorylation of proteins in the complex. Dephosphorylation of TRP and INAD was partially suppressed by the protein phosphatase inhibitors okadaic acid, microcystin, and protein phosphatase inhibitor-2. These phosphatase activities were enriched in the cytosol of wild-type heads, but drastically reduced in extracts prepared from glass mutants, which lack photoreceptors. Our findings indicate that INAD functions as RACK (receptor for activated PKC), allowing eye-PKC to phosphorylate INAD and TRP. Furthermore, dephosphorylation of INAD and TRP is catalyzed by PP1/PP2A-like enzymes preferentially expressed in photoreceptor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号