首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Profiles of chlorophyll fluorescence were measured in spinach leaves irradiated with monochromatic light. The characteristics of the profiles within the mesophyll were determined by the optical properties of the leaf tissue and the spectral quality of the actinic light. When leaves were infiltrated with 10?4M DCMU [3‐(3,4‐dichlorophenyl)‐1, 1‐dimethyl‐urea] or water, treatments that minimized light scattering, irradiation with 2000 μmol m?2 s?1 green light produced broad Gaussian‐shaped fluorescence profiles that spanned most of the mesophyll. Profiles for chlorophyll fluorescence in the red (680 ± 16 nm) and far red (λ > 710 nm) were similar except that there was elevated red fluorescence near the adaxial leaf surface relative to far red fluorescence. Fluorescence profiles were narrower in non‐infiltrated leaf samples where light scattering increased the light gradient. The fluorescence profile was broader when the leaf was irradiated on its adaxial versus abaxial surface due to the contrasting optical properties of the palisade and spongy mesophyll. Irradiation with blue, red and green monochromatic light produced profiles that peaked 50, 100 and 150 μm, respectively, beneath the irradiated surface. These results are consistent with previous measurements of the light gradient in spinach and they agree qualitatively with measurements of carbon fixation under monochromatic blue, red and green light. These results suggest that chlorophyll fluorescence profiles may be used to estimate the distribution of quanta that are absorbed within the leaf for photosynthesis.  相似文献   

2.
Y. Kobayashi  S. Köster  U. Heber 《BBA》1982,682(1):44-54
Scattering of green light and chlorophyll fluorescence by spinach leaves kept in a stream of air or nitrogen were compared with leaf adenylate levels during illumination with blue, red or far-red light. Energy charge and ATP-ADP ratios exhibited considerable variability in different leaves both in the dark and in the light. Variability is explained by different possible states of the reaction oxidizing triose phosphate or reducing 3-phosphoglycerate. Except when oxygen levels were low, there was an inverse relationship between light scattering and chlorophyll fluorescence during illumination with blue or red light. When CO2 was added to a stream of CO2-free air, chlorophyll fluorescence increased, sometimes after a transient decrease, and both light scattering and leaf ATPADP ratios decreased. Similar observations were made when air was replaced by nitrogen under blue or high-intensity red light. Under these conditions, over-reduction caused inhibition of electron transport and phosphorylation in chloroplasts. However, when air was replaced by nitrogen during illumination with low-intensity red light or far-red light, light scattering increased instead of decreasing. Under these light conditions, ATPADP ratios were maintained in the light. They decreased drastically only after darkening. Although ATPADP ratios responded faster than light scattering or the slow secondary decline of chlorophyll fluorescence due to illumination, it appeared that in the steady state, light scattering and chlorophyll fluorescence are useful indicators of the phosphorylation state of the leaf adenylate system at least under aerobic conditions, when chloroplast and extrachloroplast adenylate systems can effectively communicate.  相似文献   

3.
4.
Kaori Ohki  Tetzuya Katoh 《Planta》1976,129(3):249-251
Summary When cells of Anabaena variabilis, all the phycobilin pigments of which had been newly synthesized in the dark, were excited by light absorbed in phycocyanin, the fluorescence emission spectrum showed a peak corresponding to the emission from allophycocyanin, but no emission from chlorophyll. These cells were active in photosynthesis and, when excited by light absorbed by chlorophyll, the emitted fluorescence was characteristic of photosystem II chlorophyll. This indicates that dark synthesized phycocyanin is capable of excitation transfer to allophycocyanin but not to photosystem II chlorophyll.Abbreviation CMU 3-(p-chlorophenyl)-1,1-dimethylurea  相似文献   

5.
Adult Eucalyptus pauciflora leaves are vertically displayed. They have multiple palisade cell layers beneath both surfaces, interrupted by numerous oil glands. Here, we characterized light absorption, chlorophyll, photosynthetic capacity and CO2 fixation profiles through these leaves. Multiple chlorophyll fluorescence images of leaves viewed in cross-section were made by applying light from different directions. 14CO2 labelling, followed by paradermal cryosectioning, was used to measure profiles of photosynthesis. Photosynthetic capacity peaked 75 microm into the mesophyll beneath each surface and was lowest in the centre of the 600-microm-thick leaf. Predictions by a multilayer model using Beer's law matched the observed profiles of 14C fixation. When constrained to the horizontal, a vertically acclimated leaf gains only 79% of the daily photosynthesis achieved by a horizontally acclimated leaf. However, it outperforms the horizontally acclimated leaf when both are oriented vertically. Each half of the observed profile of photosynthetic capacity closely matches the profile of light absorption through the leaf with unilateral illumination to that surface. Derivation of biochemical parameters from gas exchange measured under unilateral illumination would underestimate the real photosynthetic capacity of these leaves by 21%.  相似文献   

6.
Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea   总被引:14,自引:9,他引:5  
Abstract. Light gradients were measured and correlated with chlorophyll concentration and anatomy of leaves in spinach (Spinacia oleracea L.). Light gradients were measured at 450, 550 and 680 nm within thin (455 μm) and thick (630 μm) leaves of spinach grown under sun and shade conditions. The light gradients were relatively steep in both types of leaves and 90% of the light at 450 and 680 nm was absorbed by the initial 140 μm of the palisade. In general, blue light was depleted faster than red light which, in turn was depleted faster than green light. Light penetrated further into the thicker palisade of sun leaves in comparison to the shade leaves. The distance that blue light at 450 nm travelled before it became 90% depleted was 120 μm in sun leaves versus 76 μm in shade leaves. Red light at 680 nm and green light at 550 nm travelled further but the trends were similar to that measured at 450nm. The steeper light gradients within the palisade-of shade leaves were caused by increased scattering of light within the intercellular air spaces and/or cells which were less compact than those in sun leaves. The decline in the amount of light within the leaf appeared to be balanced by a gradient in chlorophyll concentration measured in paradermal sections. Progressing from the adaxial epidermis, chlorophyll content increased through the palisade and then declined through the spongy mesophyll. Chlorophyll content was similar in the palisade of both sun and shade leaves. Chloroplast distribution within both sun and shade leaves was relatively uniform so that the chlorophyll gradient appeared to be caused by greater amounts of chlorophyll within chloroplasts located deeper within the leaf. These results indicate that the anatomy of the palisade may be of special importance for controlling the penetration of photo-synthetically active radiation into the leaf. Changing the structural characteristics of individual palisade cells or their arrangement may be an adaptation that maximizes the absorption of light in leaves with varying mesophyll thickness due to different ambient light regimes.  相似文献   

7.
In order to examine the transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves, a micro-fluorescence imaging system was devised using a microscope, a CCD camera with an image intensifier, an Ar and a He-Ne laser light source, an image processor, and a microcomputer. A laser light was projected vertically on to the surface of a rice leaf segment at a cut-edge, and scattered light and induced fluorescence were observed at the cut-section from a 90° angle to the axis of the laser beam. The intensity of scattered light showed a maximum at several micrometres depth from the leaf surface and a steep gradient afterwards. Fluorescence reached a maximum crossing with the decline curve of the scattered light. The maximum of fluorescence measured at 741 nm was observed at a greater depth from the leaf surface than that at 687 nm, suggesting that part of the fluorescence of the longer wavelength was emitted due to absorption of fluorescence of the shorter wavelength. Profiles of the scattered light and the chlorophyll fluorescence depended on leaf anatomy.  相似文献   

8.
The possibility that zeaxanthin mediates the dissipation of an excess of excitation energy in the antenna chlorophyll of the photochemical apparatus has been tested through the use of an inhibitor of violaxanthin de-epoxidation, dithiothreitol (DTT), as well as through the comparison of two closely related organisms (green and blue-green algal lichens), one of which (blue-green algal lichen) naturally lacks the xanthophyll cycle. In spinach leaves, DTT inhibited a major component of the rapidly relaxing high-energy-state quenching' of chlorophyll fluorescence, which was associated with a quenching of the level of initial fluorescence (F0) and exhibited a close correlation with the zeaxanthin content of leaves when fluorescence quenching was expressed as the rate constant for radiationless energy dissipation in the antenna chlorophyll. Green algal lichens, which possess the xanthophyll cycle, exhibited the same type of fluorescence quenching as that observed in leaves. Two groups of blue-green algal lichens were used for a comparison with these green algal lichens. A group of zeaxanthin-free blue-green algal lichens did not exhibit the type of chlorophyll fluorescence quenching indicative of energy dissipation in the pigment bed. In contrast, a group of blue-green algal lichens which had formed zeaxanthin slowly through reactions other than the xanthophyll cycle, did show a very similar response to that of leaves and green algal lichens. Fluorescence quenching indicative of radiationless energy dissipation in the antenna chlorophyll was the predominant component of high-energy-state quenching in spinach leaves under conditions allowing for high rates of steady-state photosynthesis. A second, but distinctly different type of high-energy-state quenching of chlorophyll fluorescence, which was not inhibited by DTT (i.e., it was zeaxanthin independent) and which is possibly associated with the photosystem II reaction center, occurred in addition to that associated with zeaxanthin in leaves under a range of conditions which were less favorable for linear photosynthetic electron flow. In intact chloroplasts isolated from (zeaxanthin-free) spinach leaves a combination of these two types of rapidly reversible fluorescence quenching occurred under all conditions examined.Abbreviations DTT dithiothreitol - F0 (or F0) yield of instantaneous fluorescence at open PS II reaction centers in the dark (or during actinic illumination) - FM (or FM) yield of maximum fluorescence induced by a saturation pulse of light in the dark (or during actinic illumination) - FV (or FV) yield of variable fluorescence induced by a saturating pulse of light in the dark (or during actinic illumination) - k D rate constant for radiationless energy dissipation in the antenna chlorophyll - SV Stern-Volmer equation - PFD photon flux density - PS I photosystem I - PS II photosystem II - QA acceptor of photosystem II - qN coefficient of nonphotochemical chlorophyll fluorescence quenching - qP coefficient of photochemical chlorophyll fluorescence quenching  相似文献   

9.
Time courses of chlorophyll fluorescence at room temperature and fluorescence spectra at 77 K were measured to investigate the light-induced changes in the distribution of light energy between the two photosy stems in young spinach leaves. Illumination of the dark adapted leaves with primarily system II light induced typical fluorescence transients at room temperature. Fluorescence spectra at 77 K showed that the intensity of system II fluorescence at 77 K changed nearly in parallel with the fluorescence transients at room temperature within the range from M1 to T during illumination of the leaf. Illumination of the dark adapted leaves with light I produced an increase of system II fluorescence measured at 77 K. The characteristics of the changes induced by light I or II were different, showing that these two effects are related to different mechanisms. These results suggest that the dark state in spinach leaves is state II, that light I induces a state II to I transition, while light II induces fluorescence changes that are produced by mechanisms other than state I-state II transitions.  相似文献   

10.
Abstract. The distribution of chlorophyll fluorescence was measured within leaves of Medicago saliva with a fibre optic microprobe. Leaves were irradiated with broad band blue light (1000 μmol m−2s−1) and chlorophyll fluorescence was measured at 688 nm. The amount of fluorescence measured within the leaf depended upon the direction in which the probe was inserted. When the probe was advanced directly through the leaf from the shaded towards the irradiated surface, the maximum amount of detected fluorescence occurred near the boundary between the palisade and spongy mesophyll. When the probe was advanced through the leaf from the opposite direction maximum detected fluorescence was at the boundary between the epidermis and palisade. These results appear to be a consequence of the blue light gradient, which declined exponentially within the palisade but was counterbalanced by increasing chlorophyll content within the leaf. Modelling indicates that the measured distribution of chlorophyll fluorescence can be explained by relatively uniform emission of fluorescence throughout the palisade layer, indicating that the chloroplasts may be photosynthetically specialized to their light environment within the leaf.  相似文献   

11.
Transient variations in the fluorescence from intact Phytolaccaamericana leaves after the onset of illumination were measuredunder various light and dark conditions. Dark-adapted leaveswhen illuminated with strong light underwent an intensity variationwith a peak; the fluorescence intensity reaching its peak severalseconds after the onset of illumination then decreasing to asteady level. The peak height relative to the steady level increasedwith the increasing intensity of actinic light. Pre-illuminationof the dark-adapted leaves with strong light caused a markedlowering of the peak. About 20 min of dark incubation was requiredfor the light-adapted leaves to return to the dark-adapted state.All of the action spectra, for the peak, the steady level andthe effect of light in post-illumination to inhibit recoveryto the dark state, showed high bands due to chlorophyll b andcarotenoid absorption and low bands due to chlorophyll a absorption.We concluded that the light absorbed by photosystem 2 is responsiblefor these phenomena. (Received April 21, 1975; )  相似文献   

12.
Chlorophyll fluorescence spectra measured with leaves are distorted by the effect of fluorescence reabsorption. A heterogeneous theoretical model simulating the effect of chloroplast arrangement in a cell on the distortion of chlorophyll fluorescence spectra due to reabsorption was formulated. Desiccation of leaves of the moss Rhizomnium punctatum was carried out as a simple model experiment. The parameters entering the model (maximal number of chloroplasts forming columns in a cell, chloroplast size and chlorophyll concentration in a chloroplast) were estimated by means of light microscopy and spectrophotometry. During the desiccation, a grouping of chloroplasts was observed by light microscopy and the chlorophyll fluorescence emission and excitation spectra of the leaves were measured at room temperature and at 77 K. The leaves were infiltrated with DCMU. The ratio F685/F735 of the main emission bands decreased by about 50% at room temperature and by about 30% at 77 K upon decreasing the leaf water content. No significant changes were found in the ratio E475/E436 of the bands of the leaf fluorescence excitation spectra at 77 K for both 685- and 735-nm emission wavelengths. The excitation spectra and mechanical dilution experiments indicated that no functional changes appeared upon desiccation at the level of energy transfer. Theoretical simulations were in a good agreement with the experimental dependencies. We were able to conclude that the grouping of chloroplasts in cells may enhance the effect of chlorophyll reabsorption and thereby cause a significant decrease of the F685/F735 ratio in the chlorophyll fluorescence spectrum.  相似文献   

13.
Temperate forests are characterised by variable light quality (i.e. spectral composition of light) at or near the forest floor. These understory environments have a high concentration of green light, as red and blue light are preferentially absorbed by upper canopy leaves. Understory species may be well-adapted for using green light to drive photosynthesis. Angiosperms have been shown to use green light for photosynthesis, but this ability has not been demonstrated in shade-dwelling bryophytes. In this study, net photosynthetic rate (PN) of three temperate understory species of moss (Dichodontium pellucidum (Hedw.) Schimp., Leucobryum albidum (Brid. ex P.Beauv) Lindb. and Amblystegium serpens (Hedw.) Schimp.) was measured under green, red?+?blue, and red?+?blue?+?green light to assess green light use efficiency. All three species were capable of photosynthesising beyond their respiratory demands using solely green light, with higher green light use efficiency measured in plants collected from areas with greater canopy cover, suggesting growth in a green light concentrated environment increases green light use efficiency. Each species was also collected from sites differing in their degree of canopy cover and grown under three light treatments (high light, low light, and green light). Photosynthetic efficiency (chlorophyll fluorescence), tissue nitrogen and carbon isotope concentrations were assessed after a short growth period. Growth conditions had little effect on leaf chemistry and monochromatic green light did not significantly degrade photosynthetic efficiency. This study provides the first evidence to date of positive net ‘green light photosynthesis’ in mosses.  相似文献   

14.
Light treatment markedly accelerated the chlorophyll loss in senescing leaves of Hydrilla verticillata [(L.f.) Royle] as compared to dark treatment, whereas such acceleration could not be observed in senescing spinach (Spinacia oleracea L.) leaves. The light-induced cholorophyll loss in Hydrilla was retarded slightly by chloramphenicol and markedly by cycloheximide. Catalase (EC 1.11.1.6) activity did not change appreciably in Hydrilla leaves either in light or in darkness, while in spinach it declined markedly in the dark, and light retarded such decline. Peroxidase activity in Hydrilla showed faster increase in light than in darkness, while in spinach it increased only in light during senescence. The activity of phenol(pyrogallol)-specific peroxidase increased markedly in light, and that of ascorbate-specific peroxidase decreased slightly both in light and darkness during senescence of Hydrilla leaves. This rise in phenolspecific peroxidase activity was prevented by cycloheximide treatment. Pretreatment of Hydrilla leaves with monophenol (2,4-dichlorophenol) and o-diphenol (hydroquinone) accelerated and retarded, respectively, the light-induced cholorophyll loss. Pretreatment of Hydrilla leaves with H2O2 augmented the chlorophyll loss more markedly in light than in darkness. The endogenous level of H2O2 increased more in light than in dark during senescence of Hydrilla leaves. Treatment of Hydrilla leaves with 3-(3.4-dichlorophenyl)-l,l-dimethylurea. a photosystem II inhibitor, prevented both light-induced rise in H2O: level and chlorophyll loss, but it was without effect in the dark. Retardation of light-induced chlorophyll loss occurred during senescence of Hydrilla leaves when light was given in different photoperiods in a 24-h daily cycle for 6 days instead of as continuous irradiance. There was a negative correlation between the length of the photoperiod and the extent of cholorophyll loss.  相似文献   

15.
CO2 uptake and chlorophyll fluorescence were measured under non-photorespiratory conditions in leaves from 14 plant species. The rate of CO2-dependent electron transport (JCO2) was calculated as four times rate of gross photosynthesis. The quantum yield of electron transport in photosystem II was estimated from the ratio delta F/Fm', where delta F is the difference between steady-state and maximal fluorescence in the light. As photon flux density (PFD) increased, JCO2 increased linearly first, and then reached saturation. The product (delta F/Fm')PFD, which is a function of electron transport rate, showed a similar response. Therefore, the relationship between (delta F/Fm') PFD versus JCO2 was proportional. However, under high light, a linear correlation was not always maintained. Factors affecting the linear correlation were analyzed by measuring CO2 uptake and chlorophyll fluorescence under illumination from either the upper (adaxial) or lower (abaxial) leaf surface, and by using plants with anatomically symmetric leaves having palisade tissues on both sides. Consequently, it was shown that the parameter delta F/Fm' is based on chlorophyll fluorescence emitted from chloroplasts present near the illuminated surface. Further, it was suggested that this restriction of the origin of fluorescence actually measured is significant in a leaf with high chlorophyll content, resulting in the deviation from linearity in the relationship between JCO2 and (delta F/Fm')PFD.  相似文献   

16.
After saturating light illumination for 3 h the potential photochemical efficiency of photosystem Ⅱ (PSII) (FJF,, the ratio of variable to maximal fluorescence) decreased markedly and recovered basically to the level before saturating light illumination after dark recovery for 3 h in both soybean and wheat leaves, indicating that the decline in FJ/Fm is a reversible down-regulation. Also, the saturating light illumination led to significant decreases in the low temperature (77 K) chlorophyll fluorescence parameters F685 (chlorophyll a fluorescence peaked at 685 nm) and F685/F735 (F735, chlorophyll a fluorescence peaked at 735 nm) in soybean leaves but not in wheat leaves. Moreover, trypsin (a protease) treatment resulted in a remarkable decrease in the amounts of PsbS protein (a nuclear gene psbS-encoded 22 kDa protein) in the thylakoids from saturating light-illuminated (SI), but not in those from darkadapted (DT) and dark-recovered (DRT) soybean leaves. However, the treatment did not cause such a decrease in amounts of the PsbS protein in the thylakoids from saturating light-illuminated wheat leaves. These results support the conclusion that saturating light illumination induces a reversible dissociation of some light-harvesting complex Ⅱ (LHClI) from PSII reaction center complex in soybean leaf but not in wheat leaf.  相似文献   

17.
1. Aqueous extracts of spinach and Aspidistra leaves yield highly opalescent preparations which are not in true solution. Such extracts differ markedly from colloidal chlorophyll in their spectrum and fluorescence. The differences between the green leaf pigment and chlorophyll in organic solvents are shown to be due to combination of chlorophyll with protein in the leaf. 2. The effect of some agents on extracts of the chlorophyll-protein compound has been investigated. Both strong acid and alkali modify the absorption spectrum, acid converting the compound to the phaeophytin derivative and alkali saponifying the esterified groups of chlorophyll. Even weakly acid solutions (pH 4.5) denature the protein. Heating denatures the protein and modifies the absorption spectrum and fluorescence as earlier described for the intact leaf. The protein is denatured by drying. Low concentrations of alcohol or acetone precipitate and denature the protein; higher concentrations cause dissociation liberating the pigments. 3. Detergents such as digitonin, bile salts, and sodium desoxycholate clarify the leaf extracts but denature the protein changing the spectrum and other properties. 4. Inhibiting agents of photosynthesis are without effect on the absorption spectrum of the chlorophyll-protein compound. 5. The red absorption band of chlorophyll possesses the same extinction value in organic solvents such as ether or petroleum ether, and in aqueous leaf extracts clarified by digitonin although the band positions are different. Using previously determined values of the extinction coefficients of purified chlorophylls a and b, the chlorophyll content of the leaf extracts may be estimated spectrophotometrically. 6. It was found that the average chlorophyll content of the purified chloroplasts was 7.86 per cent. The protein content was 46.5 per cent yielding an average value of 16.1 parts per 100 parts of protein. This corresponds to a chlorophyll content of three molecules of chlorophyll a and one of chlorophyll bfor the Svedberg unit of 17,500. It is suggested that this may represent a definite combining ratio of a and b in the protein molecule.  相似文献   

18.
Of a large number of amino acids examined, changes in glycine were the only ones which were correlated with the ability of dark-grown barley leaves to synthesise protochlorophyllide, δ-aminolaevulinic acid and chlorophyll on exposure to light. A rapid depletion was found in endogenous glycine in barley leaves after day 7. Illumination of the leaves increased the rate of glycine depletion. Glycine concentrations were high throughout the young leaf. The top and middle leaf sections however, which had maximal chlorophyll synthesising potential exhibited the most pronounced decrease in glycine as the leaf aged. Using glycine-[14C] pulse techniques the half life of glycine in 7 and 14-day-old dark-grown leaves was 3.5 and 4.4 min respectively. Light treatment lengthened the half life to 6.9 and 12.1 min in 7 day and 14-day-old-leaves. Sustained illumination continued to decrease glycine turnover.  相似文献   

19.
Many species of rainforest plants have an unusual form of leaf development such that leaves delay greening until after full leaf expansion. Chlorophyll accumulation was measured during leaf development in five woody rainforest species, three with white young leaves, and two with ‘normal’ greening. In the three species with white leaves, the chlorophyll content of the expanding leaves was about 0.4mg dm?2, whereas in the two species with green young leaves, chlorophyll content was about 2.1 mg dm?2. Chlorophyll accumulation in greenhouse and field experiments was independent of light level. During leaf expansion, species with delayed chloroplast development only absorb 18–25% of the maximum possible light, compared with 80% for species with normal greening. Furthermore, species with delayed greening have low chlorophyll contents and reduced absorption for at least 30 d after full expansion. At a PPFD typical of the forest under story, the photosynthetic light use efficiency based upon incident radiation was 0.030–0.036 for species with delayed chloroplast development and 0.068–0.085 for the two species with normal greening. The lower light use efficiency of white species was primarily due to decreased light absorption. However, they also had a slightly lower light use efficiency based upon absorbed radiation, suggesting that development of other components of the photo-synthetic apparatus also may be delayed. Despite the fact that delayed greening decreases light absorption and light use efficiency during leaf development, it is extremely common in shade-tolerant species. We suggest that an advantage of delayed greening is that resources are not invested in the leaf until it is fully expanded and better defended from herbivores.  相似文献   

20.
A portable instrument for measuring chlorophyll fluorescence induction kinetics is described and examples of measurements are given. The instrument is centered around a statistically-mixed bifurcated optical fiber. One fiber branch guides the actinic light to the sample, whereas the other branch carries the emitted chlorophyll fluorescence to the photodetector. Scattered actinic light is cut out from the detector by a red interference filter. The instrument measures fast as well as slow fluorescence induction kinetics, but is particularly well designed for analyzing fast kinetics. The high time resolution and strong, variable actinic light mean that both Fo (non-variable fluorescence) and Fm (maximal fluorescence at the P-peak) are well defined. A built in microprocessor unit with attached memory stores the fluorescence induction curve and calculates key fluorescence parameters such as Fo, Fm, Fv (variable fluorescence equals Fm?Fo), Fv/Fm (the photochemical efficiency of photosystem II) and t1/2 (half rise time from Fo, to Fm). These values are digitally displayed after each recording and they (or the whole induction curve) can be stored in a memory and later retrieved. Because of a flexible setting of the instrument it can be used with high accuracy both for optically thick leaves and for diluted suspensions of algae or chloroplasts. A simple, light weight clamp cuvette for dark adaptation of leaves has been developed. It is equipped with a gate allowing the optical fiber to be inserted without daylight reaching the dark adapted portion of the leaf. The instrument has been developed for rapid monitoring of changes in activities and organization of the photosynthetic apparatus in vivo when plants are exposed to environmental stress both in the field and in the laboratory. Examples of measurements are given for differently treated leaves of Pinus sylvestris, Salix sp., Betula verrucosa, Zea mays, Epilobium angustifo-lium and for chloroplast thylakoids isolated from Spinacia oleracea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号