首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The association of various protein constructs of MARCKS-related protein (MRP) lacking the myristoyl moiety or the basic effector domain (ED) or both to neutral and acidic supported planar phospholipid bilayer membranes has been monitored using two-mode optical waveguide spectroscopy. The importance of the myristoyl moiety for interaction with both neutral and acidic membranes is demonstrated but unmyristoylated MRP still binds appreciably to neutral membranes, albeit less than to acidic membranes. Only when both the myristoyl moiety and the ED are excised does the interaction fall to zero in the case of the acidic membranes, with very small residual binding still detectable in the presence of neutral membranes. These results point to the importance of hydrophobic interactions apart from those associated with the myristoyl moiety in the association of MRP with membranes. The ED is well endowed with hydrophobic as well as with basic residues, and the former are chiefly responsible for binding unmyristoylated MRP to neutral membranes: The very small residual attraction between MRP lacking both the myristoyl moiety and the ED is completely outweighed by electrostatic repulsion between the net acidic MRP and the acidic lipid head groups.  相似文献   

2.
The effector domain (ED) of MARCKS proteins can associate with calmodulin (CaM) as well as with phospholipids. It is not clear, however, whether a complex between MARCKS proteins and CaM can form at the surface of phospholipid membranes or whether CaM and membranes compete for ED binding. Using two-mode waveguide spectroscopy, we have investigated how CaM regulates the association of MARCKS-related protein (MRP) with planar supported phospholipid bilayer membranes. Bringing a solution containing CaM into contact with membranes on which MRP had previously been deposited results in low-affinity binding of CaM to MRP. A preformed, high-affinity CaM MRP complex in the aqueous phase binds much more slowly than pure MRP to membranes. Similar observations were made when a peptide corresponding to the ED of MRP was used instead of MRP. Hence CaM cannot form a stable complex with MRP once the latter is bound at the membrane surface. CaM can, however, strongly retard the association of MRP with lipid membranes. The most likely interpretation of these results is that CaM and the phospholipid membrane share the same binding region at the ED and that the ED is forced by membrane binding to adopt a conformation unfavorable for CaM binding.  相似文献   

3.
Myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein (MRP) are essential proteins that are implicated in coordination of membrane-cytoskeletal signalling events, such as cell adhesion, migration, secretion, and phagocytosis in a variety of cell types. The most prominent structural feature of MARCKS and MRP is a central basic effector domain (ED) that binds F-actin, Ca2+-calmodulin, and acidic phospholipids; phosphorylation of key serine residues within the ED by protein kinase C (PKC) prevents the above interactions. While the precise roles of MARCKS and MRP have not been established, recent attention has focussed on the high affinity of the MARCKS ED for phosphatidylinositol 4,5-bisphosphate (PIP2), and a model has emerged in which calmodulin- or PKC-mediated regulation of these proteins at specific membrane sites could in turn control spatial availability of PIP2. The present review summarizes recent progress in this area and discusses how the above model might explain a role for MARCKS and MRP in activation of phospholipase D and other PIP2-dependent cellular processes.  相似文献   

4.
The myristoylated alanine-rich C kinase substrate (MARCKS) has been proposed to regulate the plasticity of the actin cytoskeleton at its site of attachment to membranes. In macrophages, MARCKS is implicated in various cellular events including motility, adhesion and phagocytosis. In this report we show that macrophage extracts contain a protease which specifically cleaves human MARCKS, expressed in a cell-free system or in E. coli, between Lys-6 and Thr-7. Cleavage of MARCKS decreases its affinity for macrophage membranes by ca. one order of magnitude, highlighting the contribution of the myristoyl moiety of MARCKS to membrane binding. Importantly, cleavage requires myristoylation of MARCKS. Furthermore, MARCKS-related protein (MRP), the second member of the MARCKS family, is not digested. Since Thr-7 is lacking in MRP this suggests that Thr-7 at the P1 position is important for the recognition of lipid-modified substrates. A different product is observed when MARCKS is incubated with a calf brain cytosolic extract. This product can be remyristoylated in the presence of myristoyl-CoA and N-myristoyl transferase, demonstrating that cycles of myristoylation/demyristoylation of MARCKS can be achieved in vitro. Although the physiological relevance of these enzymes still needs to be demonstrated, our results reveal the presence of a new class of cleaving enzymes recognizing lipid-modified protein substrates.  相似文献   

5.
Several groups have observed that phosphorylation causes the MARCKS (Myristoylated Alanine-Rich C Kinase Substrate) protein to move off cell membranes and phospholipid vesicles. Our working hypothesis is that significant membrane binding of MARCKS requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic association of the single cluster of basic residues in the protein with acidic lipids and that phosphorylation reverses this electrostatic association. Membrane binding measurements with myristoylated peptides and phospholipid vesicles show this hydrophobic moiety could, at best, barely attach proteins to plasma membranes. We report here membrane binding measurements with basic peptides that correspond to the phosphorylation domains of MARCKS and neuromodulin. Binding of these peptides increases sigmoidally with the percent acidic lipid in the phospholipid vesicle and can be described by a Gouy-Chapman/mass action theory that explains how electrostatics and reduction of dimensionality produce apparent cooperativity. The electrostatic affinity of the MARCKS peptide for membranes containing 10% acidic phospholipids (10(4) M-1 = chi/[P], where chi is the mole ratio of peptide bound to the outer monolayer of the vesicles and [P] is the concentration of peptide in the aqueous phase) is the same as the hydrophobic affinity of the myristate moiety for bilayer membranes. Phosphorylation decreases the affinity of the MARCKS peptide for membranes containing 15% acidic lipid about 1000-fold and produces a rapid (t1/2 < 30 s) dissociation of the peptide from phospholipid vesicles.  相似文献   

6.
VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative ‘calcium–myristoyl switch’ regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of positively-charged residues is needed for stable membrane binding. The interaction of two members of this family, VILIP-1 and VILIP-3, with Langmuir monolayers as membrane models has been investigated in order to study the effects of both myristoylation and the highly basic region containing conserved poly-lysine residues on membrane association kinetics and binding properties. Results show that in the presence of calcium, N-myristoylation significantly increases the kinetic rate of VILIP adsorption to the membrane. Additionally, the proteins bind to negatively charged phospholipids independently of the conjugated myristate moiety. Besides the regulatory effect of calcium on the rate of binding presumably due to exposure of the myristoyl moiety ascribed to their putative ‘calcium–myristoyl switch’, VILIP-1 and -3 also engage specific interactions with biomimetic membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2). The presence of PIP2 increases the membrane association rates of both VILIPs. Taken together, these results show the major kinetic role of N-myristoylation for membrane binding, and highlight the critical role of specific phosphoinositide interactions for membrane association of members of the VILIP family.  相似文献   

7.
MARCKS, a major in vivo substrate of protein kinase C, interacts with plasma membranes in a phosphorylation-, myristoylation-, and calmodulin-dependent manner. Although we have previously observed that myristoylated and non-myristoylated MARCKS proteins behave differently during calmodulin-agarose chromatography, the role of protein myristoylation in the MARCKS-calmodulin interaction remained to be elucidated. Here we demonstrate that the myristoyl moiety together with the N-terminal protein domain is directly involved in the MARCKS-calmodulin interaction. Both myristoylated and non-myristoylated recombinant MARCKS bound to calmodulin-agarose at low ionic strengths, but only the former retained the affinity at high ionic strengths. A quantitative analysis obtained with dansyl (5-dimethylaminonaphthalene-1-sulfonyl)-calmodulin showed that myristoylated MARCKS has an affinity higher than the non-myristoylated protein. Furthermore, a synthetic peptide based on the N-terminal sequence was found to bind calmodulin only when it was myristoylated. Only the N-terminal peptide but not the canonical calmodulin-binding domain showed the ionic strength-independent calmodulin binding. A mutation study suggested that the importance of the positive charge in the N-terminal protein domain in the binding.  相似文献   

8.
The inner leaflet of a typical mammalian plasma membrane contains 20-30% univalent PS (phosphatidylserine) and 1% multivalent PtdIns(4,5)P(2). Numerous proteins have clusters of basic (or basic/hydrophobic) residues that bind to these acidic lipids. The intracellular effector CaM (calmodulin) can reverse this binding on a wide variety of proteins, including MARCKS (myristoylated alanine-rich C kinase substrate), GAP43 (growth-associated protein 43, also known as neuromodulin), gravin, GRK5 (G-protein-coupled receptor kinase 5), the NMDA (N-methyl-D-aspartate) receptor and the ErbB family. We used the first principles of physics, incorporating atomic models and the Poisson-Boltzmann equation, to describe how the basic effector domain of MARCKS binds electrostatically to acidic lipids on the plasma membrane. The theoretical calculations show the basic cluster produces a local positive electrostatic potential that should laterally sequester PtdIns(4,5)P(2), even when univalent acidic lipids are present at a physiologically relevant 100-fold excess; four independent experimental measurements confirm this prediction. Ca(2+)/CaM binds with high affinity (K(d) approximately 10nM) to this domain and releases the PtdIns(4,5)P(2). MARCKS, a major PKC (protein kinase C) substrate, is present at concentrations comparable with those of PtdIns(4,5)P(2) (approx. 10 microM) in many cell types. Thus MARCKS can act as a reversible PtdIns(4,5)P(2) buffer, binding PtdIns(4,5)P(2) in a quiescent cell, and releasing it locally when the intracellular Ca(2+) concentration increases. This reversible sequestration is important because PtdIns(4,5)P(2) plays many roles in cell biology. Less is known about the role of CaM-mediated reversible membrane binding of basic/hydrophobic clusters for the other proteins.  相似文献   

9.
MARCKS: a case of molecular exaptation?   总被引:3,自引:0,他引:3  
MARCKS (myristoylated alanine-rich C kinase substrate, 32 kDa) and its 20 kDa brother MARCKS-related protein (MRP) are abundant, widely distributed proteins unusually rich in alanine and glutamic acid, and with lysines, serines and phenylalanines concentrated in a compact "effector domain" (ED) near the middle of the sequence. Its conformation in solution appears to be labile, with little evidence for definite secondary structure. MARCKS (and MRP) interact inter alia with lipid bilayer membranes (via the myristoyl group and the ED), with protein kinases (which phosphorylate the serines in the ED), and with calmodulin (via the ED); synergies between these diverse interactions present an unusually rich array of possibilities for a variety of regulatory r?les. The proteins appear to be essential for controlling cell shape changes, possibly via involvement in cytoskeleton-membrane linkage. MRP deficiency leads to neural tube defects in brain development; MARCKS overexpression strongly depresses the proliferation of cancer cells.  相似文献   

10.
Musse AA  Gao W  Homchaudhuri L  Boggs JM  Harauz G 《Biochemistry》2008,47(39):10372-10382
The 18.5 kDa isoform of myelin basic protein (MBP) is multifunctional and has previously been shown to have structural and phenomenological similarities with domains of other membrane- and cytoskeleton-associated proteins such as MARCKS (myristoylated alanine-rich C kinase substrate). Here, we have investigated whether 18.5 kDa MBP can sequester phosphatidylinositol-(4,5)-bis-phosphate (PI(4,5)P 2) in membranes, like MARCKS and other "PIPmodulins" do. Using fluorescence-quenching and electron paramagnetic resonance (EPR) spectroscopy, and model membranes containing BODIPY-FL- or proxyl-labeled PI(4,5)P 2, respectively, we have demonstrated that MBP laterally sequesters PI(4,5)P 2. The MBP-PI(4,5)P 2 interactions are electrostatic, partially cholesterol-dependent, and sensitive to phosphorylation, deimination, and Ca (2+)-CaM binding. Confocal microscopy of cultured oligodendrocytes also revealed patched colocalization of MBP and PI(4,5)P 2, indicating the spatial clustering of PI(4,5)P 2 in the plasma membrane. On the basis of these findings as well as the overwhelming convergence of functional properties, modifying enzymes, and interaction partners, we propose that MBP is mechanistically related to GAP-43, MARCKS, and CAP-23. During myelinogenesis, it may mediate calcium and phosphorylation-sensitive plasma membrane availability of PI(4,5)P 2. This regulation of PI(4,5)P 2 availability at the cell cortex may be coupled to the elaboration and outgrowth of the membranous cellular processes by oligodendrocytes.  相似文献   

11.
MARCKS-related protein (MRP) is a peripheral membrane protein whose binding to membranes is mediated by the N-terminal myristoyl moiety and a central, highly basic effector domain. MRP mediates cross-talk between protein kinase C and calmodulin and is thought to link the actin cytoskeleton to the plasma membrane. Since MRP contains no tryptophan residues, we mutated a phenylalanine in the effector domain to tryptophan (MRP F93W) and used fluorescence spectroscopy to monitor binding of the protein to phospholipid vesicles. We report in detail the evaluation procedure necessary to extract quantitative information from the raw data. The spectra of MRP F93W obtained in the presence of increasing amounts of lipid crossed at an isosbestic point, indicating a simple transition between two states: free and membrane-bound protein. The change in fluorescence toward values typical of a more hydrophobic environment was used to quantify membrane binding. The partition coefficient agreed well with values obtained previously by other methods. To study the interaction of the N-terminus of MRP with membranes, a tryptophan residue was also introduced at position 4 (MRP S4W). Our data suggest that only the myristoylated N-terminus interacted with liposomes. These results demonstrate the versatility of site-directed incorporation of tryptophan residues to study protein-membrane interactions.  相似文献   

12.
Guanylate cyclase-activating proteins (GCAPs) are neuronal Ca2+ sensors that play a central role in shaping the photoreceptor light response and in light adaptation through the Ca2+-dependent regulation of the transmembrane retinal guanylate cyclase. GCAPs are N-terminally myristoylated, and the role of the myristoyl moiety is not yet fully understood. While protein lipid chains typically represent membrane anchors, the crystal structure of GCAP-1 showed that the myristoyl chain of the protein is completely buried within a hydrophobic pocket of the protein, which stabilizes the protein structure. Therefore, we address the question of the localization of the myristoyl group of GCAP-2 in the absence and in the presence of lipid membranes as well as DPC detergents (as a membrane substitute amenable to solution state NMR). We investigate membrane binding of both myristoylated and nonmyristoylated GCAP-2 and study the structure and dynamics of the myristoyl moiety of GCAP-2 in the presence of POPC membranes. Further, we address structural alterations within the myristoylated N-terminus of GCAP-2 in the presence of membrane mimetics. Our results suggest that upon membrane binding the myristoyl group is released from the protein interior and inserts into the lipid bilayer.  相似文献   

13.
Actinis a 42-kDa protein which, due to its ability to polymerize into filaments (F-actin), is one of the major constituents of the cytoskeleton. It has been proposed that MARCKS (an acronym for myristoylated alanine-rich C kinase substrate) proteins play an important role in regulating the structure and mechanical properties of the actin cytoskeleton by cross-linking actin filaments. We have recently reported that peptides corresponding to the effector domain of MARCKS proteins promote actin polymerization and cause massive bundling of actin filaments. We now investigate the effect of MARCKS-related protein, a 20-kDa member of the MARCKS family, on both filament structure and the kinetics of actin polymerization in vitro. Our experiments document that MRP binds to F-actin with micromolar affinity and that the myristoyl chain at the N-terminus of MRP is not required for this interaction. In marked contrast to the effector peptide, binding of MRP is not accompanied by an acceleration of actin polymerization kinetics, and we also could not reliably observe an actin cross-linking activity of MRP.  相似文献   

14.
Actinis a 42-kDa protein which, due to its ability to polymerize into filaments (F-actin), is one of the major constituents of the cytoskeleton. It has been proposed that MARCKS (an acronym for myristoylated alanine-rich C kinase substrate) proteins play an important role in regulating the structure and mechanical properties of the actin cytoskeleton by cross-linking actin filaments. We have recently reported that peptides corresponding to the effector domain of MARCKS proteins promote actin polymerization and cause massive bundling of actin filaments. We now investigate the effect of MARCKS-related protein, a 20-kDa member of the MARCKS family, on both filament structure and the kinetics of actin polymerization in vitro. Our experiments document that MRP binds to F-actin with micromolar affinity and that the myristoyl chain at the N-terminus of MRP is not required for this interaction. In marked contrast to the effector peptide, binding of MRP is not accompanied by an acceleration of actin polymerization kinetics, and we also could not reliably observe an actin cross-linking activity of MRP.  相似文献   

15.
The determination of partition coefficients is crucial for the biochemical analysis of membrane-based processes, but requires tedious procedures. We have facilitated this analysis using a silica gel coated with a single phospholipid bilayer (TRANSIL) as the membranous phase. We demonstrate the validity of this method using MARCKS-related protein, a 20-kDa member of the MARCKS family (an acronym for myristoylated alanine-rich C kinase substrate). The partition coefficients describing the association of unmyristoylated and myristoylated MARCKS-related protein with membranes of different phospholipid composition are in agreement with previous work with vesicles and show that both the myristoyl moiety and the basic effector domain of MARCKS-related protein mediate the binding. However, no significant cooperativity is observed between these two domains. Interestingly, MARCKS-related protein binds to TRANSIL membranes more strongly at temperatures below their phase-transition temperature. Taking advantage of this property, MARCKS-related protein was purified by phase-transition chromatography, loading Escherichia coli lysates on a TRANSIL column at 4 degrees C and eluting MRP at room temperature. In conclusion, TRANSIL is a versatile tool to determine the affinity of compounds for phospholipid membranes and to purify membrane-bound proteins. TRANSIL should also enable functional studies of protein-ligand and protein-protein interactions at the surface of membranes.  相似文献   

16.
Guanylate cyclase-activating protein-2 (GCAP-2) is a retinal Ca2+ sensor protein. It is responsible for the regulation of both isoforms of the transmembrane photoreceptor guanylate cyclase, a key enzyme of vertebrate phototransduction. GCAP-2 is N-terminally myristoylated and full activation of its target proteins requires the presence of this lipid modification. The structural role of the myristoyl moiety in the interaction of GCAP-2 with the guanylate cyclases and the lipid membrane is currently not well understood. In the present work, we studied the binding of Ca2+-free myristoylated and non-myristoylated GCAP-2 to phospholipid vesicles consisting of dimyristoylphosphatidylcholine or of a lipid mixture resembling the physiological membrane composition by a biochemical binding assay and 2H solid-state NMR. The NMR results clearly demonstrate the full-length insertion of the aliphatic chain of the myristoyl group into the membrane. Very similar geometrical parameters were determined from the 2H NMR spectra of the myristoyl group of GCAP-2 and the acyl chains of the host membranes, respectively. The myristoyl chain shows a moderate mobility within the lipid environment, comparable to the acyl chains of the host membrane lipids. This is in marked contrast to the behavior of other lipid-modified model proteins. Strikingly, the contribution of the myristoyl group to the free energy of membrane binding of GCAP-2 is only on the order of -0.5 kJ/mol, and the electrostatic contribution is slightly unfavorable, which implies that the main driving forces for membrane localization arises through other, mainly hydrophobic, protein side chain-lipid interactions. These results suggest a role of the myristoyl group in the direct interaction of GCAP-2 with its target proteins, the retinal guanylate cyclases.  相似文献   

17.
Rho GTPases regulate a diverse range of processes that are dependent on their proper cellular localization. The membrane localization of these GTPases is due in large part to their carboxyl-terminal geranylgeranyl moiety. In addition, most of the Rho family members contain a cluster of positively charged residues (i.e. a "polybasic domain"), directly preceding their geranylgeranyl moiety, and it has been suggested that this domain serves to fine-tune their localization among different cellular membrane sites. Here, we have taken a closer look at the role of the polybasic domain of Cdc42 in its ability to bind to membranes and induce the transformation of fibroblasts. A FRET assay for the binding of Cdc42 to liposomes of defined composition showed that Cdc42 associates more strongly with liposomes containing phosphatidylinositol 4,5-bisphosphate (PIP(2)) when compared either with uncharged control membranes or with liposomes containing a charge-equivalent amount of phosphatidylserine. The carboxyl-terminal di-arginine motif (Arg-186 and Arg-187) was shown to play an essential role in the binding of Cdc42 to PIP(2)-containing membranes. We further showed that substitutions for the di-arginine motif, when introduced within a constitutively active ("fast cycling") Cdc42(F28L) background, had little effect on the ability of the activated Cdc42 mutant to induce microspikes/filopodia in NIH 3T3 cells, whereas they eliminated its ability to transform fibroblasts. Taken together, these findings suggest that the di-arginine motif within the carboxyl terminus of Cdc42 is necessary for this GTPase to bind at membrane sites containing PIP(2), where it can initiate signaling activities that are essential for the oncogenic transformation of cells.  相似文献   

18.
A peptide corresponding to the basic (+13), unstructured effector domain of myristoylated alanine-rich C kinase substrate (MARCKS) binds strongly to membranes containing phosphatidylinositol 4,5-bisphosphate (PIP(2)). Although aromatic residues contribute to the binding, three experiments suggest the binding is driven mainly by nonspecific local electrostatic interactions. First, peptides with 13 basic residues, Lys-13 and Arg-13, bind to PIP(2)-containing vesicles with the same high affinity as the effector domain peptide. Second, removing basic residues from the effector domain peptide reduces the binding energy by an amount that correlates with the number of charges removed. Third, peptides corresponding to a basic region in GAP43 and MARCKS effector domain-like regions in other proteins (e.g. MacMARCKS, adducin, Drosophila A kinase anchor protein 200, and N-methyl-d-aspartate receptor) also bind with an energy that correlates with the number of basic residues. Kinetic measurements suggest the effector domain binds to several PIP(2). Theoretical calculations show the effector domain produces a local positive potential, even when bound to a bilayer with 33% monovalent acidic lipids, and should thus sequester PIP(2) laterally. This electrostatic sequestration was observed experimentally using a phospholipase C assay. Our results are consistent with the hypothesis that MARCKS could reversibly sequester much of the PIP(2) in the plasma membrane.  相似文献   

19.
The myristoylated alanine-rich protein kinase C substrate (MARCKS) may function to sequester phosphoinositides within the plane of the bilayer. To characterize this interaction with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), a novel spin-labeled derivative, proxyl-PIP(2), was synthesized and characterized. In the presence of molecules known to bind PI(4,5)P(2) the EPR spectrum of this label exhibits an increase in line width because of a decrease in label dynamics, and titration of this probe with neomycin yields the expected 1:1 stoichiometry. Thus, this probe can be used to quantitate the interactions made by the PI(4,5)P(2) head group within the bilayer. In the presence of a peptide comprising the effector domain of MARCKS the EPR spectrum broadens, but the changes in line shape are modulated by both changes in label correlation time and spin-spin interactions. This result indicates that at least some proxyl-PIP(2) are in close proximity when bound to MARCKS and that MARCKS associates with multiple PI(4,5)P(2) molecules. Titration of the proxyl-PIP(2) EPR signal by the MARCKS-derived peptide also suggests that multiple PI(4,5)P(2) molecules interact with MARCKS. Site-directed spin labeling of this peptide shows that the position and conformation of this protein segment at the membrane interface are not altered significantly by binding to PI(4,5)P(2). These data are consistent with the hypothesis that MARCKS functions to sequester multiple PI(4,5)P(2) molecules within the plane of the membrane as a result of interactions that are driven by electrostatic forces.  相似文献   

20.
Electrostatic interactions with positively charged regions of membrane-associated proteins such as myristoylated alanine-rich C kinase substrate (MARCKS) may have a role in regulating the level of free phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in plasma membranes. Both the MARCKS protein and a peptide corresponding to the effector domain (an unstructured region that contains 13 basic residues and 5 phenylalanines), MARCKS-(151-175), laterally sequester the polyvalent lipid PI(4,5)P2 in the plane of a bilayer membrane with high affinity. We used high resolution magic angle spinning NMR to establish the location of MARCKS-(151-175) in membrane bilayers, which is necessary to understand the sequestration mechanism. Measurements of cross-relaxation rates in two-dimensional nuclear Overhauser enhancement spectroscopy NMR experiments show that the five Phe rings of MARCKS-(151-175) penetrate into the acyl chain region of phosphatidylcholine bilayers containing phosphatidylglycerol or PI(4,5)P2. Specifically, we observed strong cross-peaks between the aromatic protons of the Phe rings and the acyl chain protons of the lipids, even for very short (50 ms) mixing times. The position of the Phe rings implies that the adjacent positively charged amino acids in the peptide are close to the level of the negatively charged lipid phosphates. The deep location of the MARCKS peptide in the polar head group region should enhance its electrostatic sequestration of PI(4,5)P2 by an "image charge" mechanism. Moreover, this location has interesting implications for membrane curvature and local surface pressure effects and may be relevant to a wide variety of other proteins with basic-aromatic clusters, such as phospholipase D, GAP43, SCAMP2, and the N-methyl-d-aspartate receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号