首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of calcium in the response of cardiac muscle to stretch   总被引:9,自引:0,他引:9  
This review focuses on the complex interactions between two major regulators of cardiac function; Ca2+ and stretch. Initial consideration is given to the effect of stretch on myocardial contractility and details the rapid and slow increases in contractility. These are shown to be related to two diverse changes in Ca2+ handling (enhanced myofilament Ca2+ sensitivity and increased intracellular Ca2+ transient, respectively). Interaction between stretch and Ca2+ is also demonstrated with respect to the rhythm of cardiac contraction. Stretch has been shown to alter action potential configuration, generate stretch-activated arrhythmias, and increase the rate of beating of the sino-atrial node. A variety of Ca(2+)-dependent mechanisms including attenuation of Ca2+ extrusion via Na+/Ca2+ exchange, Ca2+ entry through stretch-activated channels (SACs) and mobilisation of intracellular Ca2+ stores have been proposed to account for the effect of stretch on rhythm. Finally, the interaction between stretch and Ca2+ in the secretion of natriuretic peptides and onset of hypertrophy is discussed. Evidence is presented that Ca2+ (entering through L-type Ca2+ channels or SACs, or released from sarcoplasmic reticular stores) influences secretion of both atrial and B-type natriuretic peptide; there is data to support both positive and negative modulation by Ca2+. Ca2+ also appears to be important in the pathway that leads to expression of precursors of hypertrophic protein synthesis. In conclusion, two of the major regulators of cardiac muscle function, Ca2+ and stretch, interact to produce effects on the heart; in general these effects appear to be additive.  相似文献   

2.
Vasodilator actions of insulin are mediated by activation of endothelial nitric-oxide synthase (eNOS) and subsequent production of NO. Phosphatidylinositol 3-kinase and Akt play important roles in insulin-signaling pathways leading to production of NO in vascular endothelium. Here we dissected mechanisms whereby insulin activates eNOS by using the fluorescent dye DAF-2 to directly measure NO production in single cells. Insulin caused a rapid increase in intracellular NO in NIH-3T3(IR) cells transiently transfected with eNOS. The stimulation of NO production by lysophosphatidic acid (LPA) was abrogated by pretreatment of cells with the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Remarkably, in the same cells, insulin-stimulated production of NO was unaffected. However, cells expressing the eNOS-S1179A mutant (disrupted Akt phosphorylation site) did not produce detectable NO in response to insulin, whereas the response to LPA was similar to that observed in cells expressing wild-type eNOS. Moreover, production of NO in response to insulin was blocked by coexpression of an inhibitory mutant of Akt, whereas the response to LPA was unaffected. Phosphorylation of eNOS at Ser(1179) was observed only in response to treatment with insulin, but not with LPA. Interestingly, platelet-derived growth factor treatment of cells activated Akt but not eNOS. Results from human vascular endothelial cells were qualitatively similar to those obtained in transfected NIH-3T3(IR) cells, although the magnitude of the responses was smaller. We conclude that insulin regulates eNOS activity using a Ca(2+)-independent mechanism requiring phosphorylation of eNOS by Akt. Importantly, phosphorylation-dependent mechanisms that enhance eNOS activity can operate independently from Ca(2+)-dependent mechanisms.  相似文献   

3.
We developed an in situ assay system to simultaneously monitor intracellular Ca(2+) concentration ([Ca(2+)](i), fura 2 as indicator) and nitric oxide (NO) levels [4,5-diaminofluorescein as probe] in the intact endothelium of small bovine coronary arteries by using a fluorescent microscopic imaging technique with high-speed wavelength switching. Bradykinin (BK; 1 microM) stimulated a rapid increase in [Ca(2+)](i) followed by an increase in NO production in the endothelial cells. The protein tyrosine phosphatase inhibitor phenylarsine oxide (PAO; 10 microM) induced a gradual, small increase in [Ca(2+)](i) and a slow increase in intracellular NO levels. Removal of extracellular Ca(2+) and depletion of Ca(2+) stores completely blocked BK-induced increase in NO production but had no effect on PAO-induced NO production. However, a further reduction of [Ca(2+)](i) by application of BAPTA-AM or EGTA with ionomycin abolished the PAO-induced NO increase. These results indicate that a simultaneous monitoring of [Ca(2+)](i) and intracellular NO production in the intact endothelium is a powerful tool to study Ca(2+)-dependent regulation of endothelial nitric oxide synthase, which provides the first direct evidence for a permissive role of Ca(2+) in tyrosine phosphorylation-induced NO production.  相似文献   

4.
We investigated cellular mechanisms that mediate or modulate the vascular response to muscarinic receptor activation (ACh) in pulmonary veins (PV). Isometric tension was measured in isolated canine PV rings with endothelium (E+) and without endothelium (E-). Tension and intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured simultaneously in fura-2-loaded E- PV strips. In the absence of preconstriction, ACh (0.01-10 microM) caused dose-dependent contraction in E+ and E- rings. ACh contraction was potentiated by removing the endothelium or by nitric oxide (NO) synthase inhibition (N-nitro-L-arginine methyl ester, P = 0.001). Cyclooxygenase inhibition (indomethacin) reduced ACh contraction in both E+ and E- PV rings (P = 0.013 and P = 0.037, respectively). ACh contraction was attenuated by inhibitors of voltage-operated Ca(2+) channels (nifedipine, P < 0.001), inositol-1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release (2-aminoethoxydiphenyl borate, P = 0.001), PKC (bisindolylmaleimide I, P = 0.001), Rho-kinase (Y-27632, P = 0.002), and tyrosine kinase (TK; tyrphostin 47, P = 0.015) in E- PV rings. ACh (1 microM) caused a leftward shift in the [Ca(2+)](i)-tension relationship (P = 0.015), i.e., ACh increased myofilament Ca(2+) sensitivity. Inhibition of PKC, Rho-kinase, and TK attenuated the ACh-induced increase in myofilament Ca(2+) sensitivity (P < 0.001, P < 0.001, and P = 0.024, respectively). These findings indicate that in canine PV, ACh contraction is modulated by NO and partially mediated by metabolites of the cyclooxygenase pathway and involves Ca(2+) influx through voltage-operated Ca(2+) channels and IP(3)-mediated Ca(2+) release. In addition, ACh induces increased myofilament Ca(2+) sensitivity, which requires the PKC, Rho-kinase, and TK pathways.  相似文献   

5.
The Frank–Starling mechanism is a fundamental property of the vertebrate heart, which allows the myocardium to respond to increased filling pressure with a more vigorous contraction of its lengthened fibres. In mammals, myocardial stretch increases cardiac nitric oxide (NO) release from both vascular endothelium and cardiomyocytes. This facilitates myocardial relaxation and ventricular diastolic distensibility, thus influencing the Frank–Starling mechanism.In the in vitro working heart of the eel Anguilla anguilla, we previously showed that an endogenous NO release affects the Frank–Starling response making the heart more sensitive to preload. Using the same bioassay, we now demonstrate that this effect is confirmed in the presence of the exogenous NO donor S-nitroso-N-acetyl penicillamine, is independent from endocardial endothelium and guanylate cyclase/cGMP/protein kinase G and cAMP/protein kinase A pathways, involves a PI(3)kinase-mediated activation of endothelial NO synthase and a modulation of the SR-CA2+ATPase (SERCA2a) pumps. Furthermore, we show that NO influences cardiac response to preload through S-nitrosylation of phospholamban and consequent activation of SERCA2a. This suggests that in the fish heart NO modulates the Frank–Starling response through a beat-to-beat regulation of calcium reuptake and thus of myocardial relaxation.We propose that this mechanism represents an important evolutionary step for the stretch-induced intrinsic regulation of the vertebrate heart, providing, at the same time, a stimulus for mammalian-oriented studies.  相似文献   

6.
The present study tested the hypothesis that cyclic ADP ribose (cADPR) serves as a novel second messenger to mediate intracellular Ca2+ mobilization in coronary arterial endothelial cells (CAECs) and thereby contributes to endothelium-dependent vasodilation. In isolated and perfused small bovine coronary arteries, bradykinin (BK)-induced concentration-dependent vasodilation was significantly attenuated by 8-bromo-cADPR (a cell-permeable cADPR antagonist), ryanodine (an antagonist of ryanodine receptors), or nicotinamide (an ADP-ribosyl cyclase inhibitor). By in situ simultaneously fluorescent monitoring, Ca2+ transient and nitric oxide (NO) levels in the intact coronary arterial endothelium preparation, 8-bromo-cADPR (30 microM), ryanodine (50 microM), and nicotinamide (6 mM) substantially attenuated BK (1 microM)-induced increase in intracellular [Ca2+] by 78%, 80%, and 74%, respectively, whereas these compounds significantly blocked BK-induced NO increase by about 80%, and inositol 1,4,5-trisphosphate receptor blockade with 2-aminethoxydiphenyl borate (50 microM) only blunted BK-induced Ca2+-NO signaling by about 30%. With the use of cADPR-cycling assay, it was found that inhibition of ADP-ribosyl cyclase by nicotinamide substantially blocked BK-induced intracellular cADPR production. Furthermore, HPLC analysis showed that the conversion rate of beta-nicotinamide guanine dinucleotide into cyclic GDP ribose dramatically increased by stimulation with BK, which was blockable by nicotinamide. However, U-73122, a phospholipase C inhibitor, had no effect on this BK-induced increase in ADP-ribosyl cyclase activity for cADPR production. In conclusion, these results suggest that cADPR importantly contributes to BK- and A-23187-induced NO production and vasodilator response in coronary arteries through its Ca2+ signaling mechanism in CAECs.  相似文献   

7.
Stretching of cardiac muscle modulates contraction through the enhancement of the Ca2+ transient, but how this occurs is still not known. We found that stretching of myocytes modulates the elementary Ca2+ release process from ryanodine-receptor Ca2+-release channels (RyRCs), Ca2+ sparks and the electrically stimulated Ca2+ transient. Stretching induces PtdIns-3-OH kinase (PI(3)K)-dependent phosphorylation of both Akt and the endothelial isoform of nitric oxide synthase (NOS), nitric oxide (NO) production, and a proportionate increase in Ca2+-spark frequency that is abolished by inhibiting NOS and PI(3)K. Exogenously generated NO reversibly increases Ca2+-spark frequency without cell stretching. We propose that myocyte NO produced by activation of the PI(3)K-Akt-endothelial NOS axis acts as a second messenger of stretch by enhancing RyRC activity, contributing to myocardial contractile activation.  相似文献   

8.
Endothelial cells generate nitric oxide (NO) in response to agonist stimulation or increased shear stress. In this study, we evaluated the effects of abrupt cessation of shear stress on pulmonary endothelial NO generation and its relationship to changes in intracellular Ca(2+). In situ endothelial generation of NO and changes in intracellular Ca(2+) in isolated, intact rat lungs were evaluated using fluorescence microscopy with diaminofluorescein diacetate, an NO probe, and Fluo-3, a Ca(2+) probe. The onset of increased NO generation in endothelial cells of subpleural microvessels in situ occurred between 30 and 90 s after onset of ischemia and was preceded by an increase in intracellular Ca(2+) due to both influx of extracellular Ca(2+) and release from intracellular stores. Flow cessation-induced NO generation in endothelial cells in situ was Ca(2+)-, calmodulin-, and PI3-kinase-dependent. The similarity of endothelial cell response (increased NO generation) to either increased flow or cessation of flow suggests that cells respond to an imposed alteration from a state of adaptation. This response to flow cessation may constitute a compensatory vasodilatatory mechanism and may play a role in signaling for cell proliferation and vascular remodeling.  相似文献   

9.
Accumulating evidence suggests that hyperbaric oxygen (HBO) stimulates neuronal nitric oxide (NO) synthase (NOS) activity, but the influence on endothelial NOS (eNOS) activity and vascular NO bioavailability remains unclear. We used a bioassay employing rat aortic rings to evaluate vascular NO bioavailability. HBO exposure to 2.8 atm absolute (ATA) in vitro decreased ACh relaxation. This effect remained unchanged, despite treatment with SOD-polyethylene glycol and catalase-polyethylene glycol, suggesting that the reduction in endothelium-derived NO bioavailability was independent of superoxide production. In vitro HBO induced contraction of resting aortic rings with and without endothelium, and these contractions were reduced by the NOS inhibitor N(omega)-nitro-l-arginine. In addition, in vitro HBO attenuated the vascular contraction produced by norepinephrine, and this effect was reversed by N(omega)-nitro-l-arginine, but not by endothelial denudation. These findings indicate stimulation of extraendothelial NO production during HBO exposure. A radiochemical assay was used to assess NOS activity in rat aortic endothelial cells. Catalytic activity of eNOS in cell homogenates was not decreased by HBO, and in vivo HBO exposure to 2.8 ATA was without effect on eNOS activity and/or vascular NO bioavailability in vitro. We conclude that HBO reduces endothelium-derived NO bioavailability independent of superoxide production, and this effect seems to be unrelated to a decrease in eNOS catalytic activity. In addition, HBO increases the resting tone of rat aortic rings and attenuates the contractile response to norepinephrine by endothelium-independent mechanisms that involve extraendothelial NO production.  相似文献   

10.
Extracellular Ca(2+) concentration ([Ca(2+)](o)) regulates the functions of many cell types through a G protein-coupled [Ca(2+)](o)-sensing receptor (CaR). Whether the receptor is functionally expressed in vascular endothelial cells is largely unknown. In cultured human aortic endothelial cells (HAEC), RT-PCR yielded the expected 555-bp product corresponding to the CaR, and CaR protein was demonstrated by fluorescence immunostaining and Western blot. RT-PCR also demonstrated the expression in HAEC of alternatively spliced variants of the CaR lacking exon 5. Although stimulation of fura 2-loaded HAEC by several CaR agonists (high [Ca(2+)](o), neomycin, and gadolinium) failed to increase intracellular Ca(2+) concentration ([Ca(2+)](i)), the CaR agonist spermine stimulated an increase in [Ca(2+)](i) that was diminished in buffer without Ca(2+) and was abolished after depletion of an intracellular Ca(2+) pool with thapsigargin or after blocking IP(3)- and ryanodine receptor-mediated Ca(2+) release with xestospongin C and with high concentration ryanodine, respectively. Spermine stimulated an increase in DAF-FM fluorescence in HAEC, consistent with NO production. Both the increase in [Ca(2+)](i) and in NO production were reduced or absent in HAEC transfected with siRNA specifically targeted to the CaR. HAEC express a functional CaR that responds to the endogenous polyamine spermine with an increase in [Ca(2+)](i), primarily due to release of IP(3)- and ryanodine-sensitive intracellular Ca(2+) stores, leading to the production of NO. Expression of alternatively spliced variants of the CaR may result in the absence of a functional response to other known CaR agonists in HAEC.  相似文献   

11.
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.  相似文献   

12.
Ephedrine is a mixed adrenergic agonist, stimulating both alpha- and beta-adrenergic receptors. The effects of ephedrine use include increases in heart rate, cardiac output, peripheral resistance, and blood pressure, and its use is associated with serious cardiovascular events such as stroke, arrhythmias, and myocardial infarction. The vascular endothelium plays a fundamental role in the regulation of vascular tone by releasing vasoactive factors such as nitric oxide (NO). The loss of NO bioactivity, often referred to as endothelial dysfunction, is characterized by the loss of endothelium-dependent vasodilation and is thought to be a common pathway for cardiovascular events such as vasospasm, hypertension, and myocardial infarction. Since endothelial dysfunction is characterized by loss of NO activity, and since ephedrine and endothelial dysfunction may be associated with similar cardiovascular events, the current study was undertaken to determine the effect of inhibition of NO production on responses to ephedrine in the rat. A sodium nitroprusside (SNP) infusion procedure was used to restore baseline vascular parameters to pre-L-NAME levels, allowing for direct comparison of agonist responses before and after NOS inhibition. The results demonstrate that the vascular response to ephedrine in the rat is modulated by NO and that NO production in response to ephedrine may be secondary to beta 2-receptor stimulation.  相似文献   

13.
The purpose of this study was to assess the direct effect of progesterone on rabbit pulmonary arteries and to examine the mechanism of its action. Rings of pulmonary artery from male rabbits were suspended in organ baths containing Krebs solution, and isometric tension was measured. The response to progesterone was investigated in arterial rings contracted with noradrenaline (NA), KCl, and CaCl2. The effects of endothelium, nitric oxide (NO), prostaglandins, cyclic GMP (cGMP), and the adrenergic beta-receptor on progesterone-induced relaxation were also assessed. Progesterone inhibited the vasocontractivity to NA, KCl, and CaCl2, and relaxed rabbit pulmonary artery. The relaxing response of progesterone in pulmonary artery was significantly reduced by removal of endothelium, inhibitors of nitric oxide synthase and guanylate cyclase, but not by prostaglandin synthase inhibitor and blockage of the adrenergic beta-receptor. In Ca2+-free (0.1 mM EGTA) Krebs solution, progesterone inhibited NA-induced contraction that was intracellular Ca2+-dependent, but didn't affect the contraction of extracellular Ca2+-dependent component. Our results suggest that progesterone induces relaxation of isolated rabbit pulmonary arteries partially via NO and cGMP. Progesterone may also inhibit Ca2+ influx through potential-dependent calcium channels (PDCs) and Ca2+ release from intracellular stores.  相似文献   

14.
Cardiac contractile activity is usually controlled by intracellular Ca2+, but it can also be modified by oxidizing agents. Incubation of guinea pig heart myofibrils with diamide (3 mM, 1 h) increased basal (no Ca2+) ATPase activity by 580% and abolished Ca2+ dependence. The effect was proportional to diamide concentration (0.01-1 mM) and duration of preincubation (up to 2 h). Dithiothreitol (5 mM, 1 h) reversed most of the basal ATPase activation and restored Ca2+ sensitivity. Other sulfhydryl reagents produced a similar effect but also produced inhibition of total ATPase. In intact cell preparations, diamide produced a slow tonic contraction, consistent with myofibril activation. In the perfused rat heart, 1 mM diamide slowly increased diastolic ventricular pressure; this increase was partially reversed by dithioerythritol. In isolated rat heart myocytes, 1 mM diamide produced a slow tonic contraction, increased contractility in response to stimulation. Cardiocytes superfused for 1 h with buffer containing EGTA to deplete Ca2+ did not contract in response to stimulation but showed a slow tonic contraction with diamide. This contraction could be slowly and only partially reversed by dithioerythritol. Response to stimulation was restored by addition of Ca2+. The results show that diamide can produce contraction in viable cells. This contraction does not require extracellular Ca2+ and is unlikely to involve intracellular Ca2+. The direct activation of myofibrillar ATPase may contribute to the increased myocardial stiffness seen in ischemia and to ischemic contracture.  相似文献   

15.
The aim of the present study was to analyse whether an increase in the intracellular free Ca2+ concentration ([Ca2+]i) plays a role as a signal mediating synthesis of nitric oxide (NO) in bone-marrow-derived macrophages, either by stimulating induction of NO synthase or by regulating the activity of the enzyme. Therefore we compared the effects of various synthetic analogues of bacterial lipopeptide and of lipopolysaccharide (LPS) on NO production (assessed as nitrite formation during an incubation for 24 h) and on [Ca2+]i [measured with the fluorescent probe indo-1 (1-[2-amino-5-(6-carboxyindol-2-yl)phenoxy]-2- 2-(2'-amino-5'-methylphenoxy)ethane-NNN'N'-tetra-acetic acid)]. Strongly dissociating effects were evoked on nitrite formation and on [Ca2+]i by the stimuli. LPS was preferentially effective on nitrite formation, whereas the Ca2+ ionophore ionomycin and AlF3 induced increases only in [Ca2+]i. The lipopeptides N-palmitoyl-(S)-[2,3-bis(palmitoyloxy)-(2RS)- propyl]-(R)-cysteinylalanylglycine, N-palmitoyl-(S)-[2,3-bis(palmitoyloxy)- (2RS)-propyl]-(R)-cysteinylseryl-lysyl-lysyl-lysine and (S)-(1,2- dicarboxyhexadecyl)ethyl-N-palmitoylcysteinylseryl-lysyl-lys yl-lysine stimulated both parameters, but the maximal effects on nitrite formation and the shape of the dose-response curves did not parallel the effects on [Ca2+]i. Reduction of extracellular Ca2+ with EGTA significantly inhibited increases in [Ca2+]i, but did not change nitrite formation. Furthermore, NO synthesis in the cytosolic fraction of stimulated macrophages was not affected by Ca2+ over the concentration range 10 nM-2 microM. We conclude that increases in [Ca2+]i are not required for NO production in bone-marrow-derived macrophages. Thus the cellular regulation of NO production strikingly differs from that in the vascular endothelium, brain and adrenal gland.  相似文献   

16.
Simvastatin is an inhibitor of HMG-CoA reductase used in the treatment of hypercholesterolemia. In the present study simvastatin-induced contraction was observed in rat aortic thoracic rings, this effect increased when the endothelium was removed and when NO synthase was blocked by L-NOARG (3 x 10(-5) M). The contractile effect of simvastatin on intact aortic rings diminished when cyclo-oxygenase was inhibited with indomethacin (10(-5) M). Also in the presence of endothelium, pretreatment with mevalonate (1 mM), the product of HMG-CoA reductase activity, significantly inhibited the contraction. In other experiments carried out on endothelium-removed preparations and in medium containing the calcium antagonist, diltiazem (10(-5) and 10(-6) M), the contraction dose-response curves were significantly reduced and the same happened in the presence of the inhibitor of sarcoplasmic reticulum Ca-2+-ATPase, cyclopiazonic acid (CPA) (3 x 10(-6) M). The results suggest that simvastatin might increase intracellular calcium concentration. This effect could lead to an activation of NO synthase and cyclooxygenase pathways in endothelial cells and to contraction in vascular smooth muscle cells. This rise in Ca2+ concentration could be due to an inhibition of isoprenoid synthesis prevented by mevalonate.  相似文献   

17.
We previously have shown in mice and rats, enhanced leukocyte recruitment to airway postcapillary venules after excessive distention imposed by the application of positive end-expiratory pressure. Because P-selectin was shown to be essential for this outcome, we sought to establish an in vitro endothelial cell model and determine the mechanisms whereby mechanical distension alters adhesion molecule expression. P-selectin surface expression on mouse jugular vein endothelial cells exposed to cyclic stretch (5 or 20% elongation for 5 min; Flexercell) were compared with static cells. The larger, pathophysiological regimen of cyclic stretch showed a 54% increase in P-selectin expression after stretch compared with static cells. This response was attenuated but confirmed in tracheal venular endothelium (29% increase). We questioned whether these changes were dependent on increases in intracellular Ca(2+) through voltage-gated Ca(2+) channels. The stretch-induced increase in P-selectin expression was substantially decreased by pretreatment with the T-type Ca(2+) channel inhibitor mibefradil (76% inhibition). Furthermore, when the Ca(v)3.1 T-type Ca(2+) channel expression was decreased in both endothelial cell subtypes with specific small-interfering RNA, the distension-induced expression of P-selectin decreased to levels less than that observed in static cells. We conclude that P-selectin expression on systemic venular endothelial cells contributes to a proinflammatory phenotype after mechanical stretch and can be selectively modulated by voltage-gated calcium channel inhibition.  相似文献   

18.
Epidemiological evidence indicates that moderate alcohol consumption reduces the incidence of heart disease. Endothelial nitric oxide synthase (eNOS) is a key regulator of vascular homeostasis and myocardial functions through the controlled production of nitric oxide (*NO). These studies were conducted to determine if the apparent alcohol-associated cardioprotection is mediated, in part, through modulation of the eNOS protein and activity in the cardiovascular system. Rats were fed alcohol and eNOS protein and *NO production were evaluated at the end of 8 weeks. Myocardial and vascular function was assessed ex vivo in a subset of animals. Moderate alcohol improved postischemic myocardial systolic and diastolic function and attenuated the postischemic reduction in coronary vascular resistance. Moderate alcohol also enhanced maximum vascular relaxation by 26 +/- 0.2% and increased plasma *NO production concomitant with a greater than 2.5-fold increase in eNOS protein. Higher levels of alcohol impaired maximum vascular relaxation by 22 +/- 0.1%. These results suggest that moderate alcohol improves postischemic myocardial functions and increases *NO production by vascular endothelium. An increase in *NO may explain, at least in part, the cardioprotective benefits of moderate alcohol consumption.  相似文献   

19.
Male Sprague-Dawley rats were maintained on a low-salt (LS) diet (0.4% NaCl) or changed to a high-salt (HS) diet (4% NaCl) for 3 days. Increases in intracellular Ca2+ ([Ca2+]i) in response to methacholine (10 microM) and histamine (10 microM) were significantly attenuated in aortic endothelial cells from rats fed a HS diet, whereas thapsigargin (10 microM)-induced increases in [Ca2+]i were unaffected. Methacholine-induced nitric oxide (NO) production was eliminated in endothelial cells of aortas from rats fed a HS diet. Low-dose ANG II infusion (5 ng x kg(-1) x min(-1) iv) for 3 days prevented impaired [Ca2+]i signaling response to methacholine and histamine and restored methacholine-induced NO production in aortas from rats on a HS diet. Adding Tempol (500 microM) to the tissue bath to scavenge superoxide anions increased NO release and caused N(omega)-nitro-L-arginine methyl ester-sensitive vascular relaxation in aortas from rats fed a HS diet but had no effect on methacholine-induced Ca2+ responses. Chronic treatment with Tempol (1 mM) in the drinking water restored NO release, augmented vessel relaxation, and increased methacholine-induced Ca2+ responses significantly in aortas from rats on a HS diet but not in aortas from rats on a LS diet. These findings suggest that 1) agonist-induced Ca2+ responses and NO levels are reduced in aortas of rats on a HS diet; 2) increased vascular superoxide levels contribute to NO destruction, and, eventually, to impaired Ca2+ signaling in the vascular endothelial cells; and 3) reduced circulating ANG II levels during elevated dietary salt lead to elevated superoxide levels, impaired endothelial Ca2+ signaling, and reduced NO production in the endothelium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号