首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The control of luteinizing hormone (LH) secretion was investigated in ovariectomized, prepubertal Yorkshire pigs by comparing the effects of anterior (AHD), complete (CHD), and posterior (PHD) hypothalamic deafferentation to sham-operated controls (SOC). Gilts (n = 16) were assigned randomly to treatments, fitted with an indwelling jugular catheter, and ovariectomized 2 days before deafferentation or sham-operation (Day 0). Blood for radioimmunoassay (RIA) of LH was collected sequentially at 20-min intervals for a period of 2 h before and 24, 48, 72, and 96 h after hypothalamic deafferentation or SOC. Episodic LH release after AHD or CHD was abolished (p less than 0.01), but not after PHD or SOC. Concentrations of serum LH in AHD and CHD dropped (p less than 0.01) at 24 and 48 h after surgery. Levels of LH before and after surgery in PHD and SOC were similar (p greater than 0.05). Infusion of 25 micrograms LH-releasing hormone (LHRH) i.v. at 72 and 96 h after hypothalamic deafferentation and SOC increased (p less than 0.01) serum LH to peak levels within 15 min. after infusion; LH returned to basal levels 60-80 min later. By 96 h after surgery, LH response to LH-releasing hormone (LHRH) was less in AHD and CHD as compared with the response at 72 h postinjection. Concentrations of LH in PHD and SOC were similar (p greater than 0.05) at 72 and 96 h, respectively. The results from this study clearly indicate that neural stimuli originating or traversing the neural areas rostral to the median eminence are required for secretion of LH in the pig.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Current evidence suggests that endogenous opioid peptides (EOPs) tonically inhibit secretion of luteinizing hormone (LH) by modulating the release of gonadotropin-releasing hormone (GnRH). Because of their apparent inhibitory actions, EOPs have been assumed to alter both pulse frequency and amplitude of LH in the rat; and it has been hypothesized that EOP pathways mediate the negative feedback actions of steroids on secretion of GnRH. In order to better delineate the role of EOPs in regulating secretion of LH in the male rat, we assessed the effects of a sustained blockade of opiate receptors by naloxone on pulsatile LH release in four groups: intact male rats, acutely castrated male rats implanted for 20 h with a 30-mm capsule made from Silastic and filled with testosterone, acutely castrated male rats implanted for 20 h with an osmotic minipump dispensing 10 mg morphine/24 h, and male rats castrated approximately 20 h before treatment with naloxone. We hypothesized that if EOPs tonically inhibited pulsatile LH secretion, a sustained blockade of opiate receptors should result in a sustained increase in LH release. We found that treatment with naloxone resulted in an immediate but transient increase in LH levels in intact males compared to controls treated with saline. Even though mean levels of LH increased from 0.15 +/- 0.04 to a high of 0.57 +/- 0.14 ng/ml, no significant difference was observed between the groups in either frequency or amplitude of LH pulses across the 4-h treatment period. The transient increase in LH did result in a 3- to 4-fold elevation in levels of plasma testosterone over baseline. This increase in testosterone appeared to correspond with the waning of the LH response to naloxone. The LH response to naloxone was eliminated in acutely castrated rats implanted with testosterone. Likewise, acutely castrated rats treated with morphine also failed to respond to naloxone with an increase in LH. These observations suggest that chronic morphine and chronic testosterone may act through the same mechanism to modulate secretion of LH, or once shut down, the GnRH pulse-generating system becomes refractory to stimulation by naloxone. In acutely castrated male rats, levels of LH were significantly increased above baseline throughout the period of naloxone treatment; this finding supports the hypothesis that the acute elevation in testosterone acting through mechanism independent of opioid is responsible for the transient response of LH to naloxone in the intact rat.  相似文献   

3.
The effects of weaning and naloxone on concentrations of luteinizing hormone (LH) at 20 days postpartum were examined. March-lambing Finnish Landrace x Southdown ewes (n = 20) were bled via jugular venipuncture at 10-min intervals for 4 h. Naloxone (1 mg/kg bodyweight) was administered i.v. at 60, 120, and 180 min. Treatment groups were suckled (S), weaned on Day 17 (W), suckled plus naloxone (SN), and weaned plus naloxone (WN). Mean concentrations of LH were calculated for 0-60, 70-120, 130-180, and 190-240 min time intervals. Analysis of variance indicated a group effect (p = 0.03) and a group x time interaction (p = 0.02). Concentrations of LH followed a cubic pattern in SN (p = 0.03) and WN (p = 0.08) ewes, whereas LH levels decreased (p less than 0.05) in a pattern consisting of linear and quadratic trends in S and W ewes. Concentrations of LH in S and W ewes were similar at 0-60 and 190-240 min. W ewes had lower (p less than 0.05) concentrations of LH than S ewes at 70-120 and 130-190 min. Further analysis revealed that LH was elevated in SN ewes (p = 0.01) and WN ewes (p = 0.07) at 70-120 min, but was not significantly elevated at 130-180 min. At 190-240 min LH was increased in SN ewes (p = 0.03), but LH levels in WN ewes were similar to those of SN ewes as well as to those of S control ewes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Twelve lactating sows were used at 22.4 +/- 0.8 days postpartum to determine whether endogenous opioid peptides (EOP) are involved in the suckling-induced inhibition of luteinizing hormone (LH) secretion. Four sows each received either 1, 2, or 4 mg/kg body weight of naloxone (NAL), an opiate antagonist, in saline i.v. Blood was collected at 15-min intervals for 2 h before and 4 h after NAL treatment. All sows were then given 100 micrograms gonadotropin-releasing hormone (GnRH) in saline i.v., and blood samples were collected for an additional h. Pigs were weaned after blood sampling. At 40 h after weaning, sows were treated and blood samples collected as during suckling. Serum concentrations of LH after treatment with NAL were similar for all doses; therefore, the data were pooled across doses. During suckling, serum concentrations of LH were 0.41 +/- 0.04 ng/ml before NAL treatment, increased to 0.65 +/- 0.08 ng/ml at 30 min after NAL treatment, and remained elevated above pretreatment concentrations for 120 min (p less than 0.05). Naloxone failed to alter serum concentrations of LH after weaning. These data indicate that EOP may be involved in the suckling-induced suppression of LH secretion and that weaning may either decrease opioid inhibition of LH secretion or decrease pituitary LH responsiveness to endogenous GnRH released by NAL.  相似文献   

5.
During seasonal anoestrus (long-days), oestradiol can effectively inhibit the pulsatile secretion of luteinizing hormone (LH) in sheep. The aim of our trial was to determine whether the same regulatory mechanism exists in the pig. Altogether, 20 ovariectomized and oestradiol-implanted gilts (16 domestic pigs, 4 European wild boars) were randomly allocated to two treatment groups. The first group was kept under a short-day light-dark cycle of 8L:16D, and the second group under a long-day light regime of 16L:8D. After a 6-week treatment period, blood samples were taken at 20-min intervals for 12h. After sampling, the light regimens were switched. Sampling was then repeated following another 6 weeks of treatment. In both treatment groups, 2.3 LH pulses occurred every 12h. The basal LH level was 0.7+/-0.4 ng/ml for the short-day group and 1.0+/-0.5 ng/ml for the long-day group. The mean LH level was 0.9+/-0.4 and 1.3+/-0.6 ng/ml and the LH pulse amplitude 0.5+/-0.4 and 0.6+/-0.5 ng/ml, respectively. The basal and mean LH levels were therefore lower in short-day gilts (P<0.05), while LH pulse amplitude and frequency remained unaffected by treatment. In conclusion, the 6-week period under two different light regimes resulted in higher basal LH concentration in long-day gilts but was not able to produce changes in LH frequency in prepubertal gilts.  相似文献   

6.
To examine the role of opioid neurons on luteinizing hormone (LH) secretion in the female rabbit, we determined LH release at timed intervals after naloxone administration to rabbits aged 25-150 days. The LH response to naloxone (10 mg/kg) was not significantly elevated until day 43 when LH rose 76-113% above basal levels at 40-80 min. In 56-day-old females the corresponding increase was 160% at 15 min and in 65- to 67-day-olds it was 154%. From 70 to 80 days of age the LH response was blunted and no significant elevations could be elicited. By contrast, naloxone-induced LH increases were again evident when rabbits were older than 100 days. At all ages no significant change in FSH concentrations was observed. In the adult females, naloxone at 2.5, 5, and 10 mg/kg caused increases in LH secretion which occasionally were high enough to induce ovulation as exemplified by elevated serum progesterone 4 days later. These data suggest that opioid peptides may be involved in the prepubertal rise in LH and in the normal inhibition of adult secretion in the female rabbit.  相似文献   

7.
Ten intact and hypophysial stalk-transected (HST), prepuberal Yorkshire gilts, 112–160 days old, were subjected to a pulsatile infusion regimen of luteinizing hormone-releasing hormone (LHRH) to investigate secretion profiles of luteinizing hormone (LH) and ovarian function. A catheter was implanted in a common carotid artery and connected to an infusion pump and recycling timer, whereas an indwelling external jugular catheter allowed collection of sequential blood samples for radioimmunoassay of LH and progesterone. In a dose response study, intracarotid injection of 5 μg LHRH induced peak LH release (5.9 ± 0.65 ng/ml; mean ± SE) within 20 min, which was greater (P < 0.001) than during the preinjection period (0.7 ± 0.65 ng/ml). After HST, 5 μg LHRH elicited LH release in only one of three prepuberal gilts. Four intact animals were infused with 5 μg LHRH (in 0.1% gel phosphate buffer saline, PBS) in 0.5-ml pulses (0.1 ml/min) at 1.5-h intervals continuously during 12 days. Daily blood samples were obtained at 20-min intervals 1 h before and 5, 10, 20, 40, 60 and 80 min after one LHRH infusion. Plasma LH release occurred in response to pulsatile LHRH infusion during the 12-day period; circulating LH during 60 min before onset of LHRH infusion was 0.7 ± 0.16 ng/ml compared with 1.3 ± 0.16 ng/ml during 60 min after onset of infusion (P < 0.001). Only one of four intact gilts ovulated, however, in response to LHRH infusion. This animal was 159 days old, and successive estrous cycles did not recur after LHRH infusion was discontinued. Puberal estrus occurred at 252 ± 7 days in these gilts and was confirmed by plasma progesterone levels. These results indicate that intracarotid infusion of 5 μg LHRH elicits LH release in the intact prepuberal gilt, but this dosage is insufficient to cause a consistent response after HST.  相似文献   

8.
This study tested the hypothesis that central mechanisms regulating luteinizing hormone (LH) secretion are responsive to insulin. Our approach was to infuse insulin into the lateral ventricle of six streptozotocin-induced diabetic sheep in an amount that is normally present in the CSF when LH secretion is maintained by peripheral insulin administration. In the first experiment, we monitored cerebrospinal fluid (CSF) insulin concentrations every 3-5 h in four diabetic sheep given insulin by peripheral injection (30 IU). The insulin concentration in the CSF was increased after insulin injection, and there was a positive relationship between CSF and plasma concentrations of insulin (r = 0.80, P < 0.01). In the second experiment, peripheral insulin administration was discontinued, and the sheep received either an intracerebroventricular (i.c.v.) infusion of insulin (12 mU/day in 2.4 ml saline) or saline (2.4 ml/day) for 5 days (n = 6) in a crossover design. The dose of insulin (i.c.v.) was calculated to approximate the increase in CSF insulin concentration found after peripheral insulin treatment. To monitor LH secretory patterns, blood samples were collected by jugular venipuncture at 10-min intervals for 4 h on the day before and 5 days after the start of i.c.v. insulin infusion. To monitor the increase in CSF insulin concentrations, a single CSF sample was collected one and four days after the start of the central infusion. The i.c.v. insulin infusion increased CSF insulin concentrations above those in saline-treated animals (P < 0.05) and maintained them at or above the peak levels achieved after peripheral insulin treatment. Central insulin infusion did not affect peripheral (plasma) insulin or glucose concentrations. LH pulse frequency in insulin-treated animals was greater than that in saline-treated animals (3.5 +/- 0.2 vs. 2.3 +/- 0.3 pulses/4 h, P < 0.01), but it was less than that during peripheral insulin treatment (4.8 +/- 0.2 pulses/4 h, P < 0.01). Our findings suggest that physiologic levels of central insulin supplementation are able to increase pulsatile LH secretion in diabetic sheep with low peripheral insulin. These results are consistent with the notion that central insulin plays a role in regulating pulsatile GnRH secretion.  相似文献   

9.
The response of serum luteinizing hormone (LH) to naloxone, an opiate antagonist, and gonadotropin-releasing hormone (GnRH) was measured in cows in late pregnancy to assess opioid inhibition of LH. Blood samples were collected at 15-min intervals for 7 h. In a Latin Square arrangement, each cow (n = 6) received naloxone (0, 0.5, and 1.0 mg/kg BW, i.v.; 2 cows each) at Hour 2 on 3 consecutive days (9 +/- 2 days prepartum). GnRH (7 ng/kg body weight, i.v.) was administered at Hour 5 to all cows on each day. Mean serum LH concentrations (x +/- SE) before naloxone injection were similar (0.4 +/- 0.1 ng/ml), with no serum LH pulses observed during the experiment. Mean serum LH concentrations post-naloxone were similar (0.4 +/- 0.1 ng/ml) to concentrations pre-naloxone. Mean serum LH concentrations increased (p less than 0.05) following GnRH administration (7 ng/kg) and did not differ among cows receiving different dosages of naloxone (0 mg/kg, 1.44 +/- 0.20; 0.5 mg/kg, 1.0 +/- 0.1; 1.0 mg/kg, 0.9 +/- 0.1 ng/ml). In Experiment 2, LH response to naloxone and GnRH was measured in 12 ovariectomized cows on Day 19 of estrogen and progesterone treatment (5 micrograms/kg BW estrogen: 0.2 mg/kg BW progesterone) and on Days 7 and 14 after steroid treatment. On Day 19, naloxone failed to increase serum LH concentrations (Pre: 0.4 +/- 0.1; Post: 0.4 +/- 0.1 ng/ml) after 0, 0.5, or 1.0 mg/kg BW.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Luteinizing hormone (LH) and human chorionic gonadotrophin (hCG) receptors are coupled to intracellular effector systems, most notably adenylate cyclase, through guanyl nucleotide-binding proteins or G-proteins. The molecular mechanism involved in the dynamic coupling of the LH/hCG receptor however, are not known. It has been postulated that receptor aggregation at the molecular level plays a critical role in this process. There have been attempts to understand the receptor association and dissociation phenomena at the molecular level. One of them involves the participation of the major histocompatibility complex (MHC) class I antigen in the mechanism of receptor activation and/or expression. One molecular basis for these mechanisms consists of a physical interaction between MHC proteins and receptors to form "compound receptors" able to transfer a hormonal signal to the cell. Using a photo-reactive probe we demonstrated that the LH/hCG receptors and the class I antigens are closely associated in the membrane. Thus, it is possible to form covalent complexes of hCG and class I antigens through the binding of the hormone to specific receptors. These findings imply that LH/hCG receptors and the MHC class I antigens may interact at the level of the plasma membrane in the mechanism of LH action. We also performed experiments using a single cell and limiting stimulation to a patch of membrane. The results stimulating the cell in a localized area suggested that even if all components are entirely free to float there is a constraint in the localization of the receptor, G-protein, and/or the effector, supporting the constraint dissociation model. Within a limited area subunits could dissociate, but they would not be free to diffuse throughout the membrane. Moreover the concept of compartmentalization that has been utilized to explain some inconsistencies in second-messenger action now can be proved by experimental design.  相似文献   

11.
Yang G  Su J  Yao Y  Lei Z  Zhang G  Li X 《Animal reproduction science》2010,122(3-4):367-374
Neuromedin S (NMS) has been implicated in the regulation of luteinizing hormone (LH) secretion. However, the regulatory mechanism of NMS on LH in pigs remains unexplored. In the present study, we confirmed the hypothesis that the effect of NMS on LH could be mediated via hypothalamic melanocyte-stimulating hormones (MSH) neurons of ovariectomized pigs. In an immunohistological experiment, NMS receptor NMU2R-positive neurons were found in the paraventricular nucleus of hypothalamus, widely distributed in the anterior pituitary, and sparsely observed in the posterior pituitary. We also found that serum LH level was declined at between 12 and 60 min with the lowest level at 24 min after NMS injection. The decreased LH secretion induced by NMS could be completely abolished by pretreatment with melanocortin receptor-4 antagonist SHU9119, while a signal injection of 1.0 nM SHU9119 per se did not affect the serum LH level. Real time quantitative RT-PCR results showed that the expression of GnRH and LH mRNAs were down-regulated by NMS treatment, but their reduction was restored to normal level by SHU9119 treatments. The expression of NMU2R and PR mRNAs were up-regulated by NMS treatment, but their effects were blocked by SHU9119 treatments. The expression of the estrogen receptor mRNA in the pig hypothalamus and pituitary was unchanged under the NMS and SHU9119+NMS treatments. In summary, all results suggest that the inhibitory effect of NMS on LH is at least in part through its receptor NMU2R and mediated via MSH neurons in hypothalamus-pituitary axis of ovariectomized pigs.  相似文献   

12.
In the ewe, seasonal anestrus appears to result from two effects of inhibitory photoperiod: 1) estradiol gains the capacity to suppress luteinizing hormone (LH) pulse frequency and hence becomes a potent inhibitor of tonic LH secretion and 2) a steroid-independent decrease in LH pulse frequency occurs in ovariectomized ewes. In this study, we have obtained evidence, using pentobarbital anesthesia, that both these actions of photoperiod reflect the activation, in anestrus, of an inhibitory neural system. Administration of pentobarbital to intact anestrous ewes produced a dramatic, 3-fold increase in LH pulse frequency during the 6 h of anesthesia. In contrast, during the breeding season, pentobarbital inhibited LH pulse frequency in luteal phase animals. There was also a seasonal variation in the effects of pentobarbital in ovariectomized ewes. During the breeding season this drug again suppressed LH secretion, inhibiting both LH pulse amplitude and frequency. In anestrus, pentobarbital also suppressed pulse amplitude, but it produced a transitory increase (lasting 3 h) in pulse frequency. To account for the stimulatory actions of pentobarbital, we propose that in anestrus, but not the breeding season, LH pulse frequency is held in check by a set of estradiol-sensitive inhibitory neurons. Further, we suggest that these neurons are activated by inhibitory photoperiod and account for both the steroid-dependent and steroid-independent actions of photoperiod.  相似文献   

13.
Thyroid hormone action on ACTH secretion   总被引:1,自引:0,他引:1  
Thyroid hormone effects on pituitary ACTH have not been well established. Adult male Sprague-Dawley rats were rendered hypo- and hyperthyroid while undergoing treatment with 6-Propylthiouracil (PTU) and L-Thyroxine (T4). At the time of decapitation, plasma values for T4 (micrograms/100 ml) were 3.9 +/- 0.4 in the control, 17.3 +/- 2.2 in the T4 and less than 2 in the PTU treated group; plasma T3 and TSH confirmed hyper- and hypothyroidism in the T4 and PTU treated groups respectively. Plasma immunoassayable ACTH and corticosterone were significantly increased in hyperthyroid and decreased in the PTU treated animals. Pituitaries were removed and incubated in DMEM. After 3 h incubation, ACTH content and secretion to the medium were significantly lower in the PTU group. As expected, pituitary TSH content and secretion were decreased in the T4 treated animals. These data indicate that thyroid hormones influence pituitary-adrenal function by increasing ACTH secretion and consequently corticosterone production.  相似文献   

14.
The negative effect of estradiol-17beta (E2) on LH, based on exogenous E2 treatments, and the reciprocal effect of LH on endogenous E2, based on hCG treatments, were studied throughout the ovulatory follicular wave during a total of 103 equine estrous cycles in seven experiments. An initial study developed E2 treatment protocols that approximated physiologic E2 concentrations during the estrous cycle. On Day 13 (ovulation = Day 0), when basal concentrations of E2 and LH precede the ovulatory surges, exogenous E2 significantly depressed LH concentrations to below basal levels. Ablation of all follicles > or = 10 mm when the largest was > or =20 mm resulted in an increase in percentage change in LH concentration within 8 h that was greater (P < 0.03) than for controls or E2-treated/follicle-ablated mares. Significant decreases in LH occurred when E2 was given when the largest follicle was either > or =25 mm, > or =28 mm, > or =35 mm, or near ovulation. Treatment with 200 or 2000 IU of hCG did not affect E2 concentrations during the initial portion of the LH surge (largest follicle, > or =25 mm), but 2000 IU significantly depressed E2 concentrations before ovulation (largest follicle, > or =35 mm). Results indicated a continuous negative effect of E2 on LH throughout the ovulatory follicular wave and may be related to the long LH surge and the long follicular phase in mares. Results also indicated that a reciprocal negative effect of LH on E2 does not develop until the E2 surge reaches a peak.  相似文献   

15.
Active immunization of four adult pigs with highly purified porcine luteinizing hormone (pLH)--using method of multiside intradermal injections--has been performed and resulted in the production of specific antibodies. Immunization caused prolongation of estrous cycle to 47-49 days in two gilts and to 26 days in the other ones. Obtained anti-pLH pig serum was administered intravenously to 40 day pregnant gilt during 5 days (10 ml of serum, twice daily). Blood plasma progesterone (P4) concentrations decreased significantly from 8-13 to 2-4 ng/ml after two days of infusion and remained at this level for the next 5 days. Administration of this anti-pLH pig serum to gilt in the luteal phase of the estrous cycle caused the inhibition P4 to undetectable amounts. The different results were found after the passive immunization of 40 day pregnant gilt with rabbit anti-pLH globulin preparation (5 days, equivalent to 3 ml of original undiluted serum, twice daily). Although after two days of infusion P4 concentration decreased, in the next days P4 level slowly increased to pretreatment concentrations. The data suggest the possibility of specific anti-pLH antibody production in pigs by using active immunization, and the repeated utilization of such obtained antiserum in the same species for the inhibition of corpus luteum (CL) function.  相似文献   

16.
Thirty-two ovariectomized cows were used to determine the time course for the negative feedback effect of estradiol-17beta (E) on secretion of the luteinizing hormone (LH). The cows were injected with gonadotropin releasing hormone (GnRH; 40 mug) 2.5 or 5 h after pretreatment with E (1 mug/kg body weight) or with a vehicle for control (C). Pretreatment with E resulted in lower serum concentrations of LH at 2.5 h (0.27 vs 0.90 ng/ml; P < 0.01) and at 5 h (0.27 vs 0.67 ng/ml; P < 0.01); less LH was released in response to GnRH at 2.5 h after treatment compared to cows treated with C (10 +/- 4.9 vs 27 +/- 3.8 ng/ml; P < 0.001). However, when GnRH was administered 5 h after E or C, there was no difference in the total amount of LH released (34 +/- 1.8 vs 26 +/- 4.4 ng/ml; P > 0.2). Time to half area (estimate of decay for the induced surge of LH) was longer for cows treated with E when compared to those treated with C (1.3 vs 0.9 h, P < 0.001; 1.5 vs 0.8 h, P < 0.001). Time to half area was not affected by the time of administration of GnRH after E (P > 0.4). These results suggest that E acts in the pituitary to cause the initial decrease in concentrations of LH. Pituitaries in animals pretreated with E regained the capacity to release as much LH at 5 h after treatment as those treated with C at a time when LH concentrations were still suppressed by E. Thus, the hypothalamus or an extra-hypothalamic area may be involved in maintaining the suppression of LH secretion after the initial effect on the pituitary has declined.  相似文献   

17.
Moreno AS  Franci CR 《Life sciences》2004,74(16):2049-2059
Several substances work as neuromediators of the estrogen direct and indirect (through glial cells or interneurons) action on luteinizing hormone- releasing hormone (LH-RH) neurons in medial basal hypothalamus and medial preoptic area (MPOA).Angiotensin II (AII) in the MPOA stimulates the LH and it inhibits PRL secretion in some situations. On the other hand, the effect of excitatory amino acids on LH and PRL surges during proestrus as well LH surge induced by steroids depend on nitric oxide (NO). In the present study we investigated the participation of MPOA endogenous NO on gonadotropin and PRL secretion mediated by estrogen and AII. Plasma LH, FSH and PRL was determinated in estrogen primed and unprimed ovariectomized Wistar rats that received microinjection of AII or saline into the MPOA, associated or not with a previous microinjection of an inhibitor for NOS. Our results show the following: 1 - there was no change in plasma FSH in estrogen- primed or unprimed ovarictomized related with microinjections of AII or NO antagonist in the MPOA; 2- the increase in LH secretion after ovariectomy depends on, at least in part, NO activity in the MPOA; 3- estrogen may have an indirect negative feedback action on LH-RH neurons in the MPOA through NO; 4- the stimulatory action of AII in the MPOA on LH secretion in ovariectomized rats treated with estrogen depends on NO; 5 - NO in the MPOA stimulates or inhibits PRL secretion depending on the absence or presence of estrogen, respectively; 6- the inhibitory action of AII into the MPOA on PRL secretion does not seem to depend on NO.  相似文献   

18.
19.
The FSH secretion-inhibiting action of inhibin in vitro under basal conditions and also in the presence of LH-RH is suppressed by the addition of MIX, a phosphodiesterase inhibitor. In the presence of LH-RH, inhibin reduces significantly the intracellular level of cAMP in isolated pituitary cells. In contrast, the simultaneous addition of MIX and inhibin raises the cAMP level, and this stimulation is comparable to the increase observed when MIX is added alone. These observations suggest that one mode of action of inhibin could be mediated by a reduction in cAMP within the pituitary gonadotropic cell.  相似文献   

20.
Luteinizing hormone (LH) is secreted continuously from the anterior pituitary gland. The concentration in the blood of this gonadotropic hormone plays a regulatory role in the development of puberty in both sexes, in the induction of ovulation in females, and in the production of testosterone in males. The secretion of LH is in turn controlled by luteinizing hormone releasing hormone (LHRH) secreted by the hypothalamus. LH and LHRH are removed from the blood by degradation and excretion. This hormonal system is modelled by a system of ordinary differential equations based upon specific physiological and biochemical assumptions current among experimentalists in this field. The one exception is the assumption that LHRH may bind reversibly to a serum protein; an analysis of the data shows that this or a similar mechanism is a crucial specification. Data on the serum levels of LH and LHRH in two human subjects were fitted using the model. The data consist of the transients and subsequent decays created by a bolus intravenous injection of LHRH. Primary appointment: Chemistry Dept., Dalhousie University. Primary appointment: Mathematics Dept., Dalhousie University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号