首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugar analogs were used to study the inhibition of cell wall-associated glycosidases in vitro and in vivo. For in vitro characterization, cell walls were highly purified from corn (Zea mays L.) root cortical cells and methods were developed to assay enzyme activity in situ. Inhibitor dependence curves, mode of inhibition, and specificity were determined for three sugar analogs. At low concentrations of castanospermine (CAS), 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol, and swainsonine, these inhibitors showed competitive inhibition kinetics with β-glucosidase, β-GIcNAcase, and α-mannosidase, respectively. Swainsonine specifically inhibited α-mannosidase activity, and 2-acetamido-1,5-imino-1,2,5-trideoxy-d-glucitol specifically inhibited β-N-acetyl-hexosamindase activity. However, CAS inhibited a broad spectrum of cell wall-associated enzymes. When the sugar analogs were applied to 2 day old corn seedlings, only CAS caused considerable changes in root growth and development. To ensure that the concentration of inhibitors used in vitro also inhibited enzyme activity in vivo, an in vivo method for measuring cell wall-associated activity was devised.  相似文献   

2.
Relation of glycosidases to bean hypocotyl growth   总被引:6,自引:5,他引:1       下载免费PDF全文
Nevins DJ 《Plant physiology》1970,46(3):458-462
The enzymes β-glucosidase, α-glucosidase, β-galactosidase, α-galactosidase, and β-xylosidase were detected in Phaseolus vulgaris L. var. Red Kidney bean hypocotyl tissue throughout the first 13 days of development with p-nitrophenyl glycosides as substrates. Activities of all enzymes except β-glucosidase declined as a function of increasing tissue age. In contrast, β-glucosidase activity increased rapidly 3 days after imbibition to a maximal activity at 5 days and then subsided to one-third the maximum by day 7. This activity peak immediately preceded the logarithmic phase of hypocotyl growth. This enzyme is strongly associated with cell walls during extraction, suggesting that it is wall-bound in situ. Various polysaccharide substrates were used to evaluate the specificity of this enzyme.  相似文献   

3.
Evans ML 《Plant physiology》1974,54(2):213-215
Research on the mode of action of auxin in the promotion of growth has shown that auxin treatment leads to hydrogen ion secretion and wall acidification. It has recently been reported that auxin stimulates cell wall β-galactosidase activity in Avena coleoptiles, presumably by causing cell wall acidification, since the pH optimum for the enzyme is about 5.0. It has been suggested that enhancement of β-galactosidase and/or other glycosidase activity mediates growth promotion by auxin or low pH. This hypothesis was tested by examining the effect of inhibitors of β-galactosidase and β-glucosidase. Severe inhibition of measureable β-galactosidase or β-glucosidase activity was found to have no effect on auxin- or acid-promoted growth. It is concluded that neither β-galactosidase nor β-glucosidase plays an important role in short term growth promotion by auxin or acid. The data do not rule out the possibility that some other cell wall glycosidase is involved in auxin or acid action.  相似文献   

4.
Several glycosidases have been isolated from suspensioncultured sycamore (Acer pseudoplatanus) cells. These include an α-galactosidase, an α-mannosidase, a β-N-acetyl-glucosaminidase, a β-glucosidase, and two β-galactosidases. The pH optimum of each of these enzymes was determined. The pH optima, together with inhibition studies, suggest that each observed glycosidase activity represents a separate enzyme. Three of these enzymes, β-glucosidase, α-galactosidase, and one of the β-galactosidases, have been shown to be associated with the cell surface. The enzyme activities associated with the cell surface were shown to possess the ability to degrade to a limited extent isolated sycamore cell walls. It was found that the activities of β-glucosidase and of one of the β-galactosidases increase as the cells go through a period of growth and decrease as cell growth ceases.  相似文献   

5.
Soybean cells in suspension culture were inhibited in their growth by mixed culture with Rhizobium japonicum 5033. Rhizobium cells had the ability to adsorb on the surface of soybean cells. Cell envelope prepared from Rhizobium by sonic oscillation inhibited the growth of soybean cells. The growth-inhibiting activity of the cell envelope was depressed by β-glucosidase, KIO4, urea, sodium cholate, and Triton X-100, but was stable on heating at 120 C for 15 minutes. Adsorption of the cell envelope on soybean cells was depressed by only β-glucosidase. The sodium cholate-soluble fraction of the cell envelope had the growth-inhibiting activity. Results in this paper suggest that components of the Rhizobium cell surface cause the inhibition of soybean cell growth after the adsorption of the Rhizobium cell to the soybean cell.  相似文献   

6.
Cell-free extracts, membranous fractions, and cell wall preparations from Schizosaccharomyces pombe were examined for the presence of (1 → 3)-β-, (1 → 3)-α-, and (1 → 6)-β-glucanase activities. The various glucanases were assayed in cells at different growth stages. Only (1 → 3)-β-glucanase activity was found, and this was associated with the cell wall fraction. Chromatographic fractionation of the crude enzyme revealed two endo-(1 → 3)-β-glucanases, designated as glucanase I and glucanase II. Glucanase I consisted of two subunits of molecular weights 78,500 and 82,000, and glucanase II was a single polypeptide of 75,000. Although both enzymes had similar substrate specificities and similar hydrolytic action on laminarin, glucanase II had much higher hydrolytic activity on isolated cell walls of S. pombe. On the basis of differential lytic activity on cell walls, glucanase II was shown to be present in conjugating cells and highest in sporulating cells. Glucanase II appeared to be specifically involved in conjugation and sporulation since vegetative cells and nonconjugating and nonsporulating cells did not contain this enzyme. The appearance of glucanase II in conjugating cells may be due to de novo enzyme synthesis since no activation could be demonstrated by combining extracts from vegetative and conjugating cells. Increased glucanase activity occurred when walls from conjugating cells were combined with walls from sporulating cells. Studies with trypsin and proteolytic inhibitors suggest that glucanase II exists as a zymogen in conjugating cells. A temperature-sensitive mutant of S. pombe was isolated which lysed at 37°C. Glucanase activity was higher in vegetative cells held at 37°C than cells held at 25°C. Unlike the wild-type strain, this mutant contained glucanase II activity during vegetative growth and may be a regulatory mutant.  相似文献   

7.
The effect of a number of physiological variables on the secretion of polysaccharide-degrading enzymes by culture-grown Colletotrichum lindemuthianum (Saccardo and Magnus) Scribner was determined. The number of spores used to inoculate cultures grown on isolated bean hypocotyl cell walls affects the time after inoculation at which enzyme secretion occurs, but has no significant effect on the maximal amount of enzyme ultimately secreted. Cell walls isolated from bean leaves, first internodes, or hypocotyls (susceptible to C. lindemuthianum infection), when used as carbon source for C. lindemuthianum growth, stimulate the fungus to secrete more α-galactosidase than do cell walls isolated from roots (resistant to infection). The concentration of carbon source used for fungal growth determines the final level of enzyme activity in the culture fluid. The level of enzyme secretion is not proportional to fungal growth; rather, enzyme secretion is induced. Maximal α-galactosidase activity in the culture medium is found when the concentration of cell walls used as carbon source is 1% or greater. A higher concentration of cell walls is necessary for maximal α-arabinosidase activity. Galactose, when used as the carbon source, stimulates α-galactosidase secretion but, at comparable concentrations, is less effective in doing so than are cell walls. Polysaccharide-degrading enzymes are secreted by C. lindemuthianum at different times during growth of the pathogen on isolated cell walls. Pectinase and α-arabinosidase are secreted first, followed by β-xylosidase and cellulase, then β-glucosidase, and, finally, α-galactosidase.  相似文献   

8.
When 36-hour-old dark grown radish seedlings are transferred to far-red light, there is a decrease in cytoplasmic β-fructosidase (βF) and an increase in cell wall βF compared to the dark controls. Cytoplasmic and cell wall-bound β-fructosidase are both glycoproteins and exhibit high antigenic similarities, but differ according to charge heterogeneity and carbohydrate microheterogeneity. Growth of radish seedlings in the presence of tunicamycin results in a partial inhibition of βF glycosylation but nonglycosylated βF still accumulates in the cell wall under far-red light. Thus, glycosylation is not necessary for intracellular transport, for correct targetting, or for wall association of an active βF. The nonglycosylated cytoplasmic and cell wall βF forms have the same relative molecular mass but glycosylated forms have different oligosaccharide side-chains, with respect to size and susceptibility to α-mannosidase and endoglycosidase D digestion. The oligosaccharides of both forms are partly removed by endoglycosidase H when βF is denatured. Isoelectric focusing analysis of βF shows that the cell wall-associated isozymes are more basic than the cytoplasmic isozymes, and that the charge heterogeneity also exists within a single plant. A time course of changes in βF zymograms shows a far red light stimulation of the appearance of the basic forms of the enzyme. However, the more basic cell wall specific βF forms are not present when N-glycosylation is prevented with tunicamycin. These results indicate that cytoplasmic and cell wall βF probably have common precursor polypeptides and basic cell wall forms arise via processing events which are tunicamycin sensitive.  相似文献   

9.
The ability of β-glucosylase I, a soybean cell wall β-glucosyl hydrolase, to degrade elicitors of phytoalexin accumulation was studied. Extensive β-glucosylase I treatment of the glucan elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae results in hydrolysis of 77% of the glucosidic bonds of the elicitor and destruction of 94% of its activity. Soybean cell walls contain some additional factor, probably one or more additional enzymes, which can assist β-glucosylase I in hydrolyzing the glucan elicitor. This was demonstrated by the more rapid hydrolysis of the glucan elicitor by a mixture of soybean cell wall enzymes (containing β-glucosylase I). In a single treatment, the mixture of cell wall enzymes hydrolyzed 91% of the glucosidic bonds and destroyed 85% of the activity of the elicitor. The enzymes from soybean cell walls will also hydrolyze elicitor-active oligoglucosides prepared from the mycelial walls of Phytophthora megasperma var. sojae. The active oligoglucosides are more susceptible than the glucan elicitor to hydrolysis by these enzymes. The mixture of cell wall enzymes or β-glucosylase I, by itself, hydrolyzes more than 96% of the glucosidic bonds and destroys more than 99% of the activity of the oligoglucoside elicitor. Two possible advantages for the existence of these enzymes in the walls of soybean cells are discussed.  相似文献   

10.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

11.
Cell wall proteins at low water potentials   总被引:13,自引:9,他引:4       下载免费PDF全文
We investigated the proteins extractable from cell walls of stem tissues when plants were subjected to low water potentials (low ψw). Dark-grown soybean seedlings (Glycine max [L.] Merr.) showed decreased stem growth when the roots were exposed to vermiculite having low water content (ψw = −3 bar). After a time, growth resumed but at a reduced rate relative to the controls. The extractable protein increased in the cell walls as ψw decreased, especially a 28-kilodalton protein in the young tissue. In contrast, a 70 kilodalton protein, mainly extractable from mature cell walls, appeared to decrease slightly at low ψw. No hydroxyproline was present in either protein, which shows that neither protein is related to extensin. The level of the 28 kilodalton protein increased in the cell wall of the dividing region soon after the initial growth inhibition, and it appeared in the elongating tissue at about the time growth resumed. The correlation between growth and these protein changes suggests that the two events could be related.  相似文献   

12.
Since xyloglucan is believed to bind to cellulose microfibrils in the primary cell walls of higher plants and, when isolated from the walls, can also bind to cellulose in vitro, the binding mechanism of xyloglucan to cellulose was further investigated using radioiodinated pea xyloglucan. A time course for the binding showed that the radioiodinated xyloglucan continued to be bound for at least 4 hours at 40°C. Binding was inhibited above pH 6. Binding capacity was shown to vary for celluloses of different origin and was directly related to the relative surface area of the microfibrils. The binding of xyloglucan to cellulose was very specific and was not affected by the presence of a 10-fold excess of (1→2)-β-glucan, (1→3)-β-glucan, (1→6)-β-glucan, (1→3, 1→4)-β-glucan, arabinogalactan, or pectin. When xyloglucan (0.1%) was added to a cellulose-forming culture of Acetobacter xylinum, cellulose ribbon structure was partially disrupted indicating an association of xyloglucan with cellulose at the time of synthesis. Such a result suggests that the small size of primary wall microfibrils in higher plants may well be due to the binding of xyloglucan to cellulose during synthesis which prevents fasciation of small fibrils into larger bundles. Fluorescent xyloglucan was used to stain pea cell wall ghosts prepared to contain only the native xyloglucan:cellulose network or only cellulose. Ghosts containing only cellulose showed strong fluorescence when prepared before or after elongation; as predicted, the presence of native xyloglucan in the ghosts repressed binding of added fluorescent xyloglucan. Such ghosts, prepared after elongation when the ratio of native xyloglucan:cellulose is substantially reduced, still showed only faint fluorescence, indicating that microfibrils continue to be coated with xyloglucan throughout the growth period.  相似文献   

13.
Deletion or repression of Aspergillus nidulans ugmA (AnugmA), involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA) crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and wall composition in A. nidulans. The complemented (AnugmA::wild type AfugmA) strain had wild type phenotype, indicating these genes had functional homology. Consistent with in vitro studies, AfUgmA residues R182 and R327 were important for its function in vivo, with even conservative amino (RK) substitutions producing AnugmA? phenotype strains. Similarly, the conserved AfUgmA loop III histidine (H63) was important for Galf generation: the H63N strain had a partially rescued phenotype compared to AnugmA▵. Collectively, A. nidulans strains that hosted mutated AfUgmA constructs with low enzyme activity showed increased hyphal surface adhesion as assessed by binding fluorescent latex beads. Consistent with previous qPCR results, immunofluorescence and ELISA indicated that AnugmA▵ and AfugmA-mutated A. nidulans strains had increased α-glucan and decreased β-glucan in their cell walls compared to wild type and AfugmA-complemented strains. Like the AnugmA▵ strain, A. nidulans strains containing mutated AfugmA showed increased sensitivity to antifungal drugs, particularly Caspofungin. Reduced β-glucan content was correlated with increased Caspofungin sensitivity. Aspergillus nidulans wall Galf, α-glucan, and β-glucan content was correlated in A. nidulans hyphal walls, suggesting dynamic coordination between cell wall synthesis and cell wall integrity.  相似文献   

14.
The ultrastructure of isolated cell walls of Saccharomyces cerevisiae from the log and stationary phases of growth was studied after treatment with the following enzymes: purified endo-β-(1 → 3)-glucanase and endo-β-(1 → 6)-glucanase produced by Bacillus circulans; purified exo-β-glucanase and endo-β-(1 → 3)-glucanase produced by Schizosaccharomyces versatilis; commercial Pronase. While exo-β-glucanase from S. versatilis had no electron microscopically detectable effect on the walls, Pronase removed part of the external amorphous wall material disclosing an amorphous wall layer in which fibrils were indistinctly visible. Amorphous wall material was completely removed by the effect of either endo-β-(1 → 3)- or endo-β-(1 → 6)-glucanase of B. circulans or by a mixture of the two enzymes. As a result of these treatments a continuous fibrillar component appeared, composed of densely interwoven microfibrils resisting further action by both of the B. circulans enzymes. The fibrillar wall component was also demonstrated in untreated cell walls by electron microscopy after negative staining. Because of the complete disappearance of the fibrils following treatment with the S. versatilis endo-β-(1 → 3)-glucanase it can be concluded that this fibrillar component is composed of β-(1 → 3)-linked glucan. Bud scars were the only wall structures resistant to the effect of the latter enzyme.  相似文献   

15.
Since Saccharomyces cerevisiae lacks the cellulase complexes that hydrolyze cellulosic materials, which are abundant in the world, two types of hydrolytic enzymes involved in the degradation of cellulosic materials to glucose were genetically co-immobilized on its cell surface for direct utilization of cellulosic materials, one of the final goals of our studies. The genes encoding FI-carboxymethylcellulase (CMCase) and β-glucosidase from the fungus Aspergillus aculeatus were individually fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin and introduced into S. cerevisiae. The delivery of CMCase and β-glucosidase to the cell surface was carried out by the secretion signal sequence of the native signal sequence of CMCase and by the secretion signal sequence of glucoamylase from Rhizopus oryzae for β-glucosidase, respectively. The genes were expressed by the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The CMCase and β-glucosidase activities were detected in the cell pellet fraction, not in the culture supernatant. The display of CMCase and β-glucosidase proteins on the cell surface was confirmed by immunofluorescence microscopy. The cells displaying these cellulases could grow on cellobiose or water-soluble cellooligosaccharides as the sole carbon source. The degradation and assimilation of cellooligosaccharides were confirmed by thin-layer chromatography. This result showed that the cell surface-engineered yeast with these enzymes can be endowed with the ability to assimilate cellooligosaccharides. This is the first step in the assimilation of cellulosic materials by S. cerevisiae expressing heterologous cellulase genes.  相似文献   

16.
The edible straw mushroom, Volvariella volvacea, produces a multicomponent enzyme system consisting of endo-1,4-β-glucanase, cellobiohydrolase, and β-glucosidase for the conversion of cellulose to glucose. The highest levels of endoglucanase and cellobiohydrolase were recorded in cultures containing microcrystalline cellulose (Avicel) or filter paper, while lower but detectable levels of activity were also produced on carboxymethyl cellulose, cotton wool, xylitol, or salicin. Biochemical analyses of different culture fractions in cultures exhibiting peak enzyme production revealed that most of the endoglucase was present either in the culture filtrate (45.8% of the total) or associated with the insoluble pellet fraction remaining after centrifugation of homogenized mycelia (32.6%). Cellobiohydrolase exhibited a similar distribution pattern, with 58.9% of the total enzyme present in culture filtrates and 31.0% associated with the pellet fraction. Conversely, most β-glucosidase activity (63.9% of the total) was present in extracts of fungal mycelia whereas only 9.4% was detected in culture filtrates. The endoglucanase and β-glucosidase distribution patterns were confirmed by confocal laser scanning microscopy combined with immunolabelling. Endoglucanase was shown to be largely cell wall associated or located extracellularly, with the highest concentrations being present in a region 1 to 2 μm wide immediately adjacent to the outer surface of (and possibly including) the hyphal wall and extending 60 to 70 μm from the hyphal tip. Immunofluorescence patterns indicated little if any intracellular endoglucanase. Most β-glucosidase was located intracellularly in the apical area extending 60 to 70 μm below the hyphal tip, although enzyme was also evident in the extracellular region extending approximately 15 μm all around the hyphal tip and trailing back along the length of the hypha. The regions of the hypha located some distance from the apical region appeared to be devoid of intracellular β-glucosidase, and the enzyme appears to be associated almost exclusively with, or located on the outside surface of, the hyphal wall.  相似文献   

17.
Enzymatically active cell wall isolaled from olive (Olea europaea) fruit was employed Hi investigate some hydrolytic enzymes bound to the cell wall and the changes in these during ripening. Seven glycosidases. β-glucosidase (EC 3.2.1.21) α-galactosidase (EC 3.2.1.22). β-galactosidase (EC 3.2.1.23). α-arabinosidase (EC 3.2.1.55), α-mannosidase (EC 3.2.1,24). β-xylosidase (EC 3.2.1.37) and β-N-acetylglucosamidase (EC 3.2.1.30). as well as Cx-cellulase (EC 3.2.1.4) and endo-polygalacturonase (EC 3.2.1.15). were identified in the cell wall preparation, at four stages of ripeness (mature green. changing colour, black and black-ripe). Activities of all these cell wall-associated enzymes fionicallv and covalently linked) were determined either by cell wall incubation with artificial substrate or after extraction from the cell wall with buffers of high salt concentration (Cx-cellulase). and were compared to those of forms solubilized from acetone powders with 500 nM citrate buffer (cytoplasmic and/or apoplastic plus ionically hound to cell wall) In general, the activities of low ionic strength buffer-soluble enzymes were found to be much higher than those of the bound enzymes. The bound enzymes are present in the fruit at the green colour stage, whereas the activities of the soluble enzymes only increased from the changing colour stage onwards. The tenacity of binding of enzymes to the wall was investigated by treating the walls with high salt and measuring residual activity. The nature of the ionic and covalent binding and the changes during ripening were also established for wall-hound glycosidase During ripening there was a marked change in the percentages of covalently- and tonically linked activities of β-glucosidase and β-galaclosidase: al the changing colour stages about 75–80% of the bound active in was present in high ionic strength buffer while al the black-ripe stage it was only 15–20. A possible role for these cell wall degradative enzymes in olive softening is discussed.  相似文献   

18.
The aim of the study was to demonstrate seasonal changes in the hydrolytic and transferase activity of neutral α-glucosidase, the level of glucose, cholesterol, triglycerides and total protein in the annual breeding cycle of the carp. The study was conducted on fish from a fish farm in Lower Silesia (Poland). Blood serum was collected from the heart in: June, September and December of two consecutive years. The results of the study show that the hydrolytic and transferase activity of neutral α-glucosidase, as well as the results of basic biochemical parameters are highest in summer, when the fish seek and intake food intensively. The lowest values were observed in spring, when carp have the lowest metabolism after the wintering period.  相似文献   

19.
Cytophaga hutchinsonii is an aerobic cellulolytic soil bacterium which was reported to use a novel contact-dependent strategy to degrade cellulose. It was speculated that cellooligosaccharides were transported into the periplasm for further digestion. In this study, we reported that most of the endoglucanase and β-glucosidase activity was distributed on the cell surface of C. hutchinsonii. Cellobiose and part of the cellulose could be hydrolyzed to glucose on the cell surface. However, the cell surface cellulolytic enzymes were not sufficient for cellulose degradation by C. hutchinsonii. An outer membrane protein, CHU_1277, was disrupted by insertional mutation. Although the mutant maintained the same endoglucanase activity and most of the β-glucosidase activity, it failed to digest cellulose, and its cellooligosaccharide utilization ability was significantly reduced, suggesting that CHU_1277 was essential for cellulose degradation and played an important role in cellooligosaccharide utilization. Further study of cellobiose hydrolytic ability of the mutant on the enzymatic level showed that the β-glucosidase activity in the outer membrane of the mutant was not changed. It revealed that CHU_1277 played an important role in assisting cell surface β-glucosidase to exhibit its activity sufficiently. Studies on the outer membrane proteins involved in cellulose and cellooligosaccharide utilization could shed light on the mechanism of cellulose degradation by C. hutchinsonii.  相似文献   

20.
Dwarf maize (Zea mays L.), a mutant deficient in gibberellin synthesis, provides an excellent model to study the influence of gibberellin on biochemical processes related to plant development. Alterations in the chemical structure of the cell wall mediated by gibberellin were examined in seedlings of this mutant. The composition of the walls of roots, mesocotyl, coleoptile, and primary leaves of dwarf maize was similar to that of normal maize and other cereal grasses. Glucuronoarabinoxylans constituted the principal hemicelluloses, but walls also contained substantial amounts of xyloglucan and mixed-linkage β-d-glucan. Root growth in dwarf maize was essentially normal, but growth of mesocotyl and primary leaves was severely retarded. Injection of the gibberellin into the cavity of the coleoptile resulted in a marked increase in elongation of the primary leaves. This elongation was accompanied by increases in total wall mass, but the proportion of β-d-glucan decreased from 20% to 15% of the hemicellulosic polysaccharide. During leaf expansion, the proportion decreased further to only 10%. Through 4 days incubation, the proportion of β-d-glucan in leaves of control seedlings without gibberellin was nearly constant. Extraction of exo- and endo-β-d-glucan hydrolases from purified cell walls and assay against a purified oat bran β-d-glucan demonstrated that gibberellin increased the activity of the endo-β-d-glucan hydrolase. These and other data support the hypothesis that β-d-glucan metabolism is central to control of cell expansion in cereal grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号