首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We previously isolated three extracellular endogenous enzymes from a Streptomyces albogriseolus mutant strain which were targets of Streptomyces subtilisin inhibitor (SSI) (S. Taguchi, A. Odaka, Y. Watanabe, and H. Momose, Appl. Environ. Microbiol. 61:180-186, 1995). In the present study, of the three enzymes the largest one, with a molecular mass of 45 kDa (estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis), termed SAM-P45, has been characterized in detail. The entire gene encoding SAM-P45 was cloned as an approximately 10-kb fragment from S. albogriseolus S-3253 genomic DNA into an Escherichia coli host by using a shuttle plasmid vector. The amino acid sequence corresponding to the internal region of SAM-P45, deduced from the nucleotide sequence of the gene, revealed high homology, particularly in three regions around the active-site residues (Asp, His, and Ser), with the amino acid sequences of the mature domain of subtilisin-like serine proteases. In order to investigate the enzymatic properties of this protease, recombinant SAM-P45 was overproduced in Streptomyces coelicolor by using a strong SSI gene promoter. Sequence analysis of the SAM-P45 gene and peptide mapping of the purified SAM-P45 suggested that it is synthesized as a large precursor protein containing a large C-terminal prodomain (494 residues) in addition to an N-terminal preprodomain (23 and 172 residues). A high proportion of basic amino acids in the C-terminal prodomain was considered to serve an element interactive with the phospholipid bilayer existing in the C-terminal prodomain, as found in other membrane-anchoring proteases of gram-positive bacteria. It is noteworthy that SAM-P45 was found to prefer basic amino acids to aromatic or aliphatic amino acids in contrast to subtilisin BPN', which has a broad substrate specificity. The hydrolysis by SAM-P45 of the synthetic substrate (N-succinyl-L-Gly-L-Pro-L-Lys-p-nitroanilide) most preferred by this enzyme was inhibited by SSI, chymostatin, and EDTA. The proteolytic activity of SAM-P45 was stimulated by the divalent cations Ca2+ and Mg2+. From these findings, we conclude that SAM-P45 interacts with SSI and can be categorized as a novel member of the subtilisin-like serine protease family.  相似文献   

2.
3.
The S character of Drosophila simulans, the absence or malformation or both of bristles and other cuticular structures, was described by Comendador (Drosophila Inf. Serv. 55:26-28, 1980). Its characteristics (maternal transmission, low pathogenicity, and sensitivity to temperature) suggested the existence of a virus as the causative agent. Indeed, reoviruslike particles were found in subcuticular cells of S individuals, and its association with S phenotypic expression was shown. This virus was called Drosophila S virus (DSV) (C. Louis, M. López-Ferber, N. Plus, G. Kuhl, and S. Baker, J. Virol. 62:1266-1270, 1988). We report here the purification and analysis of some properties of DSV particles, the morphology (spherical, 60 nm in diameter with an electron dense central core and less dense shell) and genome composition (double-stranded RNA divided into segments), which classify DSV as a new member of the family Reoviridae.  相似文献   

4.
Radixin is a novel member of the band 4.1 family   总被引:35,自引:22,他引:13       下载免费PDF全文
Radixin is an actin barbed-end capping protein which is highly concentrated in the undercoat of the cell-to-cell adherens junction and the cleavage furrow in the interphase and mitotic phase, respectively (Tsukita, Sa., Y. Hieda, and Sh. Tsukita. 1989 a.J. Cell Biol. 108:2369-2382; Sato, N., S. Yonemura, T. Obinata, Sa. Tsukita, and Sh. Tsukita. 1991. J. Cell Biol. 113:321-330). To further understand the structure and functions of the radixin molecule, we isolated and sequenced the cDNA clones encoding mouse radixin. Direct peptide sequencing of radixin and immunological analysis with antiserum to a fusion protein were performed to confirm that the protein encoded by these clones is identical to radixin. The composite cDNA is 4,241 nucleotides long and codes for a 583-amino acid polypeptide with a calculated molecular mass of 68.5 kD. Sequence analysis has demonstrated that mouse radixin shares 75.3% identity with human ezrin, which was reported to be a member of the band 4.1 family. We then isolated the cDNA encoding mouse ezrin. Sequence analysis and Northern blot analysis revealed that radixin and ezrin are similar but distinct (74.9% identity), leading us to conclude that radixin is a novel member of the band 4.1 family. In erythrocytes the band 4.1 protein acts as a key protein in the association of short actin filaments with a plasma membrane protein (glycophorin), together with spectrin. Therefore, the sequence similarity between radixin and band 4.1 protein described in this study favors the idea that radixin plays a crucial role in the association of the barbed ends of actin filaments with the plasma membrane in the cell-to-cell adherens junction and the cleavage furrow.  相似文献   

5.
Uncoating ATPase is a member of the 70 kilodalton family of stress proteins   总被引:84,自引:0,他引:84  
The synthetic peptide, VGIDLGTTYSC, derived from the heat shock-induced genes human hsp70, Drosophila hsp70, S. cerevisiae YG100, and E. coli dnaK, elicited antibodies that recognized two constitutive proteins in bovine extracts. One of these proteins, 71 kd, has previously been identified as uncoating ATPase, an enzyme that releases clathrin from coated vesicles. This immunological data complemented the result that uncoating ATPase was indistinguishable from the constitutive mammalian 71 kd stress protein by either partial proteolytic mapping or two-dimensional gel analysis. In addition, affinity-purified uncoating ATPase antibodies recognize proteins in yeast identified as the gene products of the heat shock or heat shock cognate genes YG100 and YG102. The results show that uncoating ATPase is a member of the 70 kd heat shock protein family.  相似文献   

6.
7.
8.
The small genome size and gene number of ascidians makes them an ideal model system in which to screen for conserved genes that regulate the development of chordates. Expression cloning has proven to be an effective strategy for isolating genes that play a role in embryogenesis. We have taken advantage of the large size and ease of manipulation of Xenopus embryos for use as an assay system to screen for developmental regulatory genes from the ascidian Ciona intestinalis. Many invertebrate genes have been shown to function in vertebrates, providing us with precedent for our cross-species analysis. The first clone isolated from this screen is an astacin class metalloprotease. This ascidian astacin, named no va, causes a gastrulation defect in Xenopus. In C. intestinalis, no va is expressed both maternally and zygotically. The zygotic expression is seen in the mesenchyme of gastrula and neurula staged embryos.  相似文献   

9.
GCR2 was recently proposed to represent a G-protein-coupled receptor (GPCR) for the plant hormone, abscisic acid (ABA). We and others provided evidence that GCR2 is unlikely to be a bona fide GPCR because it is not clearly predicted to contain seven transmembrane domains, a structural hallmark for classical GPCRs. Instead, GCR2 shows significant sequence similarity to homologs of bacterial lanthionine synthetase component C (LanC). Here, we provide additional analysis of GCR2 and LanC-like (LANCL) proteins in plants, and propose that GCR2 is a new member of the eukaryotic LANCL protein family.Key words: GCR2, G-protein-coupled receptor, abscisic acid (ABA), lanthionine synthetaseSeven transmembrane (7TM) G-protein-coupled receptors (GPCRs) comprise the largest protein family in mammals, and are the most pharmacologically important receptor family, being the target of approximately half of all modern medicinal drugs. All canonical GPCRs are integral membrane proteins and are predicted to contain 7TM-spanning domains as their structural hallmark, a pattern confirmed by the high-resolution crystal structure of human β2-adrenergic GPCR.1,2 GPCRs sense extracellular molecules and activate intracellular cell signaling via coupling with heterotrimeric G-proteins. Heterotrimeric G-protein subunits are conserved in plants, but the repertoire of heterotrimeric G-protein complexes to which they contribute in plants is much simpler than in mammals.3,4 Liu et al. (2007) proposed that GCR2 is a GPCR for the plant hormone abscisic acid (ABA) in Arabidopsis.5 However, GCR2 was predicted not to be a 7TM protein when its amino acid sequence was analyzed in robust transmembrane prediction systems.6,7 On the other hand, GCR2 has significant sequence similarity to homologs of bacterial lanthionine synthetase component C (LanC) that are found in diverse eukaryotes and which have predicted structural similarity to prokaryotic LanC.6,7 These findings raise the possibility that GCR2 belongs to the LanC protein superfamily, rather than the GPCR superfamily.  相似文献   

10.
Human EML4 (EMAP-like protein 4) is a novel microtubule-associated WD-repeat protein of 120 kDa molecular weight, which is classified as belonging to the conserved family of EMAP-like proteins. Cosedimentation assays demonstrated that EML4 associates with in vitro polymerized microtubules. Correspondingly, immunofluorescence stainings and transient expression of EGFP-labeled EML4 revealed a complete colocalization of EML4 with the interphase microtubule array of HeLa cells. We present evidence that the amino-terminal portion of EML4 (amino acids 1-249) is essential for the association with microtubules. Immunoprecipitation experiments revealed that EML4 is hyperphosphorylated on serine/threonine residues during mitosis. In addition, immunofluorescence stainings demonstrated that hyperphosphorylated EML4 is associated with the mitotic spindle, suggesting that the function of EML4 is regulated by phosphorylation. siRNA-mediated knockdown of EML4 in HeLa cells led to a significant decrease in the number of cells. In no case mitotic figures could be observed in EML4 negative HeLa cells. Additionally, we observed a significant reduction of the proliferation rate and the uptake of radioactive [3H]-thymidine as a result of EML4 silencing. Most importantly, EML4 negative cells showed a completely modified microtubule network, indicating that EML4 is necessary for correct microtubule formation.  相似文献   

11.
12.
A yeast two-hybrid screen with the human S6 (TBP7, RPT3) ATPase of the 26 S proteasome has identified gankyrin, a liver oncoprotein, as an interacting protein. Gankyrin interacts with both free and regulatory complex-associated S6 ATPase and is not stably associated with the 26 S particle. Deletional mutagenesis shows that the C-terminal 78 amino acids of the S6 ATPase are necessary and sufficient to mediate the interaction with gankyrin. Deletion of an orthologous gene in Saccharomyces cerevisiae suggests that it is dispensable for cell growth and viability. Overexpression and precipitation of tagged gankyrin from cultured cells detects a complex containing co-transfected tagged S6 ATPase (or endogenous S6) and endogenous cyclin D-dependent kinase CDK4. The proteasomal ATPases are part of the AAA (ATPases associated with diverse cellular activities) family, members of which are molecular chaperones; gankyrin complexes may therefore influence CDK4 function during oncogenesis.  相似文献   

13.
Receptor-like protein-tyrosine phosphatase sigma (PTPvarsigma) is essential for neuronal development and function. Here we report that PTPvarsigma is a target of alpha-latrotoxin, a strong stimulator of neuronal exocytosis. alpha-Latrotoxin binds to the cell adhesion-like extracellular region of PTPvarsigma. This binding results in the stimulation of exocytosis. The toxin-binding site is located in the C-terminal part of the PTPvarsigma ectodomain and includes two fibronectin type III repeats. The intracellular catalytic domains of PTPvarsigma are not required for the alpha-latrotoxin binding and secretory response triggered by the toxin in chromaffin cells. These features of PTPvarsigma resemble two other previously described alpha-latrotoxin receptors, neurexin and CIRL. Thus, alpha-latrotoxin represents an unusual example of the neurotoxin that has three independent, equally potent, and yet structurally distinct targets. The known structural and functional characteristics of PTPvarsigma, neurexin, and CIRL suggest that they define a functional family of neuronal membrane receptors with complementary or converging roles in presynaptic function via a mechanism that involves cell-to-cell and cell-to-matrix interaction.  相似文献   

14.
Unlike in other mammalian species, the major whey protein in mouse is not alpha-lactalbumin, but a cysteine rich, acidic protein with a molecular weight of 14.0 kDa. We have deduced the amino acid sequence of this mouse acidic of whey protein from the nucleotide sequence of cloned cDNA. The positions of the half cysteines suggest that mouse whey acidic protein (WAP) is a two domain protein, very similar in structure to the plant lectin wheat germ agglutinin and the hypothalamic carrier protein neurophysin.  相似文献   

15.
Piscidins are linear, amphipathic, antimicrobial peptides (AMPs) with broad, potent, activity spectrum. Piscidins and other members of the piscidin family appear to comprise the most common group of AMPs in teleost fish. All piscidins and related members of the piscidin family described to date are 18–26 amino acids long. We report here the isolation of a novel 5329.25 Da, 44-residue (FFRHLFRGAKAIFRGARQGXRAHKVVSRYRNRDVPETDNNQEEP) antimicrobial peptide from hybrid striped bass (Morone chrysops female x M. saxatilis male). We have named this peptide “piscidin 4” since it has considerable (to > 65%) N-terminal sequence homology to piscidins 1–3 and this distinctive, 10 to 11-residue, N-terminus is characteristic of piscidins. The native peptide has a modified amino acid at position 20 that, based upon mass spectrometry data, is probably a hydroxylated tryptophan. Synthetic piscidin 4 (with an unmodified tryptophan at position 20) has similar antibacterial activity to that of the native peptide. Piscidin 4 demonstrates potent, broad-spectrum, antibacterial activity against a number of fish and human pathogens, including multi-drug resistant bacteria. Its potent antimicrobial activity suggests that piscidin 4 plays a significant role in the innate defense system of hybrid striped bass.  相似文献   

16.
Jahng WJ  Xue L  Rando RR 《Biochemistry》2003,42(44):12805-12812
Lecithin retinol acyltransferase (LRAT) catalyzes the reversible esterification of vitamin A using lecithin as the acyl donor. LRAT is the founder member of a new class of enzymes, which include class II tumor suppressors, proteins essential for development, and putative proteases. All of these proteins possess Cys and His residues homologous to C161 and H60 of LRAT. These two residues are shown here to be essential for LRAT activity and are part of a catalytic dyad reminiscent of that found in thiol proteases. However, the local primary sequence contexts of C161 and H60 of LRAT and family are not at all homologous to those found in the approximately 20 thiol protease families. Moreover, LRAT shows pKs of 8.3 and 10.8, compared to approximately 4.0 and 8.5 observed in the thiol proteases. LRAT also contains Gln177 and Asp67 residues, which are largely conserved in the homologues. However, neither of these residues is essential for catalysis. Thiol proteases often contain catalytically essential Asp or Gln residues. It is concluded that LRAT is the founder member of a new class of Cys-His enzymes with diverse functions.  相似文献   

17.
A new member of the plasma protease inhibitor gene family.   总被引:2,自引:0,他引:2       下载免费PDF全文
H Ragg 《Nucleic acids research》1986,14(2):1073-1088
A 2.1-kb cDNA clone representing a new member of the protease inhibitor family was isolated from a human liver cDNA library. The inhibitor, named human Leuserpin 2 (hLS2), comprises 480 amino acids and contains a leucine residue at its putative reactive center. HLS2 is about 25-28% homologous to three human members of the plasma protease inhibitor family: antithrombin III, alpha 1-antitrypsin and alpha 1-antichymotrypsin. A comparison with published partial amino acid sequences shows that hLS2 is closely related to the thrombin inhibitor heparin cofactor II.  相似文献   

18.
The amino acid sequence of the monomeric alpha-macroglobulin (alphaM) from the American bullfrog, Rana catesbiana, was determined. The mature protein consisted of 1469 amino acid residues and shared sequence identity with other members of the alphaM family of protein. The central portion of the frog monomeric alphaM contained Cys residues positioned analogously to the Cys residues in human alpha(2)-macroglobulin (alpha(2)M), known to be involved in disulfide bridges. Additionally, the frog monomeric alphaM contained six Cys residues in a approximately 60 residue COOH-terminal extension not present in previously characterized alphaMs. The spacing of the Cys residues and the overall sequence identity of this COOH-terminal extension were consistent with a trefoil motif. This is the first time a member of the trefoil factor family has been identified in the circulatory system. The "bait region" was located between Arg(675)-Lys(685) and contained mainly basic amino acid residues. The COOH-terminal receptor-binding domain was not exposed prior to proteolysis of this highly susceptible region. The proximity of the receptor-binding and trefoil domains implied that the trefoil domain is similarly concealed before bait region cleavage.  相似文献   

19.
The nematode CED-4 protein and its human homolog Apaf-1 play a central role in apoptosis by functioning as direct activators of death-inducing caspases. A novel human CED-4/Apaf-1 family member called CARD4 was identified that has a domain structure strikingly similar to the cytoplasmic, receptor-like proteins that mediate disease resistance in plants. CARD4 interacted with the serine-threonine kinase RICK and potently induced NF-kappaB activity through TRAF-6 and NIK signaling molecules. In addition, coexpression of CARD4 augmented caspase-9-induced apoptosis. Thus, CARD4 coordinates downstream NF-kappaB and apoptotic signaling pathways and may be a component of the host innate immune response.  相似文献   

20.
We have isolated from a human prostate cDNA library a cDNA encoding a novel member of the S100 family of EF-hand proteins. The encoded 99-amino acid protein, designated S100Z, is capable of interacting with another member of the family, S100P. S100Z cDNA was cloned into a bacterial expression system, and the S100Z protein was purified to homogeneity from bacterial lysates by a combination of hydrophobic column and gel-filtration chromatography. Direct amino acid sequencing of the 20 N-terminal amino acids confirmed that the sequence of the recombinant protein is identical to the sequence deduced from the cDNA. Low-resolution structural data have been obtained using circular dichroism and fluorescence spectroscopies, and equilibrium analytical centrifugation. These results show that S100Z is a dimeric, predominantly alpha-helical protein. Addition of calcium to a solution of S100Z changes the fluorescence intensity of the protein, indicating that S100Z is capable of binding calcium ions. Analysis of the calcium-binding isotherm indicates the existence of two calcium-binding sites with apparent affinities on the order of 5 x 10(6) and 10(2) M(-1). Binding of calcium results in conformational changes and exposure of hydrophobic surfaces on the protein. Using a PCR-based assay, we have detected differences in the expression level of S100Z mRNA in various tissues. The highest levels were found in spleen and leukocytes. S100Z gene expression appears to be deregulated in some tumor tissues, compared to expression in their normal counterparts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号