首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The "heptasaccharides" O-alpha-D-galactopyranosyl-(1----3)- O-alpha-D-glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose 2'-[O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl- (1----3)-O-alpha-L-rhamnopyranosyl-(1----3)-D-ribit-5-yl sodium phosphate] (25) and O-alpha-D-galactopyranosyl- (1----3)-O-alpha-D-glucopyranosyl-(1----3)-alpha, beta-L-rhamnopyranose 2'-[O-alpha-D-galactopyranosyl-(1----3)-O-alpha-D-glucopyranosyl- (1----3)-O-alpha-L-rhamnopyranosyl-(1----4)-D-ribit-5-yl sodium phosphate] (27), which are structural elements of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B ([----2)- -alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap- (1----X)-D-RibOH-(5-P----]n; 6A X = 3, 6B X = 4), respectively, have been synthesized. 2,4-Di-O-acetyl- 3-O-[2,4,6-tri-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L-rhamnopyranosyl trichloroacetimidate (13) was coupled with 5-O-allyloxycarbonyl-1,2,4-tri-O- benzyl-D-ribitol (10), using trimethylsilyl triflate as a promotor (----14), and deallyloxycarbonylation (----15) and conversion into the corresponding triethylammonium phosphonate then gave 16. Condensation of 16 with 4-methoxybenzyl 2,4-di-O-benzyl-3-O-[2,4,6-tri-O-benzyl-3-O-(3,4,6-tri-O-benzyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]- alpha-L-rhamnopyranoside (22) followed by oxidation and deprotection afforded 25. 5-O-Allyl-1-O-allyloxycarbonyl-2,3-di-O-benzyl-D-ribitol (12) was coupled with 13, using trimethylsilyl triflate as a promoter, the resulting tetrasaccharide-alditol derivative 17 was deallyloxycarbonylated (----18), acetylated (----19), and deallylated (----20), and the product was converted into the triethylammonium phosphonate derivative 21. Condensation of 21 with 22 followed by oxidation and deprotection afforded 27.  相似文献   

2.
The synthesis is reported of methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D- glucopyranosyl)-alpha-L-rhamnopyranoside (1), methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D-glucopyranosyl-beta-D- galactopyranoside (3), methyl 3-O-(4-O-beta-D-galactopyranosyl-alpha-D-glucopyranosyl)-alpha-L- rhamnopyranoside 3"-(sn-glycer-3-yl sodium phosphate) (2), and methyl 2-O-alpha-D-glucopyranosyl-4-O-beta-D- glucopyranosyl-beta-D-galactopyranoside 3-(sn-glycer-3-yl sodium phosphate) (4), which are trisaccharide methyl glycosides related to fragments of the capsular polysaccharide of Streptococcus pneumoniae type 18C ([----4)-beta-D- Glcp-(1----4)-[alpha-D-Glcp-(1----2)]-[Glycerol-(1-P----3)]-beta-D-Galp - (1----4)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-(1----]n). Ethyl 4-O-acetyl-2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside (10) was coupled with benzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside (6). Deacetylation of the product, followed by condensation with 2,4,6-tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (18), gave benzyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O- benzyl-4-O-(2,4,6-tri-O-acetyl-3-O-allyl-beta-D-galactopyranosyl)-alpha- D- glucopyranosyl]-alpha-L-rhamnopyranoside (19). Acetolysis of 19, followed by methylation, deallylation (----22), and further deprotection afforded 1. Condensation of methyl 2,4-di-O-benzyl-3-O-[2,3,6-tri-O-benzyl-4-O-(2,4,6-tri- O-acetyl-beta-D-galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L- rhamnopyranoside (22) with 1,2-di-O-benzyl-sn-glycerol 3-(triethyl-ammonium phosphonate) (24), followed by oxidation and deprotection, yielded 2. Condensation of ethyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-glucopyranoside (27) with methyl 3-O-allyl-4,6-O-benzylidene-beta-D-galactopyranoside (28), selective benzylidene ring-opening of the product, coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (31), and deallylation afforded methyl 6-O-benzyl-4-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-2-O- (2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl)-beta-D-galactopyranoside (33). Deprotection of 33 gave 3, and condensation of 33 with 24, followed by oxidation and deprotection, gave 4.  相似文献   

3.
Five modified moltooligosaccharides, phenyl O-6-amino-6-deoxy-alpha-D- glucopyranosyl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1-- --4)- alpha-D-glucopyransoide (AG4P), phenyl O-(alpha-D-glucopyranosyluronic acid)-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-d-glucopyran osy l- (1----4)-alpha-D-glucopyranoside (CG4P), phenyl O-6-amino-6-deoxy-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyra nos yl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1-- --4)- alpha-D-glucopyranoside (AG5P), phenyl O-(alpha-D-glucopyranosyluronic acid)-(1----4)-O-alpha-D-glucopyranosyl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1-- --4)- alpha-D-glucopyranoside (CG5P), and phenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)- O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-a lph a-D- glucopyranoside (FG4P), were prepared to examine the active site of Taka-amylase A (TAA) [EC 3.2.1.1, Aspergillus oryzae]. Phenyl alpha-maltotetraoside (G4P) was predominantly hydrolyzed by TAA to maltose and phenyl alpha-maltoside (G2P). While G2P, phenyl alpha-glucoside (GP), and phenol were liberated from AG4P in the ratio of 7:63:30. G4P, phenyl alpha-maltotrioside (G3P), G2P, and GP were liberated from G5P in the ratio of 1:20:73:6, but AG5P was almost completely hydrolyzed to modified maltotriose and G2P. On the hydrolysis of CG4P and CG5P, no remarkable change was observed except for a decrease in the relative reaction rates compared with G4P and G5P, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
4-Methoxybenzyl 2,4-di-O-benzyl-3-O-[2,4,6-tri-O-benzyl-3-O-(3,4,6-tri-O-benzyl-alpha-D- galactopyranosyl)-alpha-D-glucopyranosyl]-alpha-L-rhamnopyranoside (22), a building block for the alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap fragment of the capsular polysaccharides of Streptococcus pneumoniae types 6A and 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----X)-D- RibOH-(5-P----]n (6A, X = 3; 6B, X = 4) has been synthesised. Ethyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside was coupled with 4-methoxybenzyl 2,4-di-O-benzyl-alpha-L-rhamnopyranoside in ether, using methyl triflate as promoter. The resulting alpha-D-Glcp-(1----3)-alpha-L-Rhap derivative was deallylated with KOBut in N,N-dimethylformamide followed by 0.1M HCl in 9:1 acetone-water. The product was coupled with 3,4,6-tri-O-acetyl-2-O-allyl-alpha,beta-D-galactopyranosyl trichloroacetimidate in ether, using trimethylsilyl triflate, to yield 19. Deacetylation, benzylation, and deallylation then gave 22.  相似文献   

5.
The modes of action of four alpha-amylase isozymes, which were purified from human saliva, on p-nitrophenyl alpha-maltopentaoside (G5P), maltohexaitol (G6R), and their 2-pyridylamino derivatives, p-nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)-O-alpha- D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-alpha-D-glucopyranoside (FG5P) and O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)- O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O- alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-D- glucitol (FG6R) were examined at various pH values. No differences in their modes of action on the substrates was found. Irrespective of which enzyme was used, the molar ratio of the hydrolysis products of G5P or G6R was almost constant at any pH examined. On the other hand, those of FG5P and FG6R varied with pH such that predominantly O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-D-glucose (FG3) was formed at high pH ranges, while the formation of O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)- O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-D-gl ucose (FG4) increased at lower pH. The result indicates that the binding mode of FG5P or FG6R to the active sites of the enzymes changed with pH; namely, interactions between the 2-pyridylamino residue of the substrates and some amino acid residue(s) located in the active sites were influenced by pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A mixture of p-nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranoside (FG5P) and p-nitrophenyl alpha-D-glucoside (GP) was incubated with cyclomaltodextrin glucanotransferase (CGTase) [EC 2.4.1.19]. Analysis of the digest by HPLC showed that the products were p-nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-alpha-D-glucopyranoside (FG4P) and p-nitrophenyl alpha-D-maltoside (G2P), and no other product could be detected. Based on the reaction, a sensitive method to assay for CGTase was developed.  相似文献   

7.
Cross-reactions of four synthetic branched glucans (3-O-alpha-D-glucopyranosyl-(1----6)-alpha-D-glucopyranans: V39, V17, V37, and V32, each containing one unit glucose branches amounting to 11-12%, 33-43%, 50-54%, and 71-100%, respectively) with rabbit anti-N4 dextran were examined. All four samples precipitated antibodies raised in rabbits by injecting N4 dextran-concanavalin A conjugate. The ability of glucans to precipitate antibody depended on the quantity of branches, samples with more branches precipitating less antibody nitrogen under the same conditions. This may indicate an inhibitory effect of the branches on precipitation. Oligosaccharide inhibition assay showed that the precipitation reactions were specific for (1----6)-alpha-D-glucopyranosyl linkages, and the maximum size of the alpha-(1----6)-specific antibody combining site corresponded to isomaltopentaose. Determination of antibody nitrogen and glucan in the precipitates indicated that the ratios of one combining site of antibody to numbers of glucose residues were 1:9 (V39), 1:11 (V17), and 1:16 (V37) in the extreme antibody excess region. A synthetic sample of manno-glucan ((1----6)-alpha-D-glucopyranan containing about 27% of randomly linked 3-O-alpha-D-mannopyranosyl side chains) also reacted with the same antibody.  相似文献   

8.
The synthesis is reported of 3-aminopropyl 4-O-(4-O-beta-D-glucopyranosyl-2-O-alpha-L-rhamnopyranosyl-beta-D- galactopyranosyl)-beta-L-rhamnopyranoside 3'-(glycer-2-yl sodium phosphate) (25 beta), which represents the repeating unit of the capsular polysaccharide of Streptococcus pneumoniae type 23F (American type 23) [(----4)-beta-D-Glcp-(1----4)-[Glycerol-(2-P----3)] [alpha-L- Rhap-(1----2)]-beta-D-Galp-(1----4)-beta-L-Rhap-(1----)n). 2,4,6-Tri-O-acetyl-3-O-allyl-alpha-D-galactopyranosyl trichloroacetimidate (5) was coupled with ethyl 2,3-di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (6). Deacetylation of the resulting disaccharide derivative, followed by benzylidenation, and condensation with 2,3,4-trio-O-acetyl-alpha-L-rhamnopyranosyl trichloroacetimidate (10) afforded ethyl 4-O-[3-O-allyl-4,6-O-benzylidene-2-O-(2,3,4-trio-O-acetyl- alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio - alpha-L-rhamnopyranoside (11). Deacetylation of 11, followed by benzylation, selective benzylidene ring-opening, and coupling with 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (15) gave ethyl 4-O-[3-O-allyl-6-O-benzyl-4-O-(2,3,4,6- tetra-O-acetyl-beta-D-glucopyranosyl)-2-O-(2,3,4-tri-O-benzyl-alpha-L- rhamnopyranosyl)-beta-D-galactopyranosyl]-2,3-di-O-benzyl-1-thio-alpha-L - rhamnopyranoside (16). Deacetylation of 16 followed by benzylation, deallylation, and acetylation yielded ethyl 4-O-[3-O-acetyl-6-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-beta-D-glucopy ran osyl)- 2-O-(2,3,4-tri-O-benzyl-alpha-L-rhamnopyranosyl)-beta-D-galactopyranosyl ]-2,3- di-O-benzyl-1-thio-alpha-L-rhamnopyranoside (20). The glycosyl bromide derived from 20, when coupled with 3-benzyloxycarbonylamino-1-propanol, gave the beta-glycoside (21 beta) as the major product. Deacetylation of 21 beta followed by condensation with 1,3-di-O-benzylglycerol 2-(triethylammonium phosphonate) (27), oxidation, and deprotection, afforded 25 beta.  相似文献   

9.
Aspergillus oryzae alpha-amylase [(1----4)-alpha-D-glucan glucanohydrolase, EC 3.2.1.1] produced O-(6-phosphoryl-alpha-D-glucopyranosyl)-(1----4)-O-alpha-D-glucopyran osy l-(1----4)-D-glucopyranose (6(3)-phosphorylmaltotriose) and O-alpha-D-glucopyranosyl-(1----4)-O-(3-phosphoryl-alpha-D-glucopyranosyl )- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-D-glucopyranose (3(3)-phosphorylmaltotetraose) from potato starch upon exhaustive hydrolysis. These products indicate that the enzyme hydrolyses the same linkages in the vicinity of the 6-phosphorylated residue as porcine-pancreatic alpha-amylase, but hydrolyses different linkages in the vicinity of the 3-phosphorylated residue when compared with B. subtilis and pancreatic alpha-amylases. Potato phosphorylase [(1----4)-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1] and rabbit muscle phosphorylase a and b were unable to by-pass the phosphorylated D-glucosyl residue of 6-phosphorylated (1----4)-alpha-D-glucan, leaving three D-glucosyl residues attached to the 6-phosphorylated residue on the non-reducing side.  相似文献   

10.
p-Nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)-O-alpha-D - glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-alpha-D-glucopyranoside, FG5P, was prepared, taking advantage of the action of Bacillus macerans cyclodextrin glucanotransferase on a mixture of O-6-deoxy-6-[(2-pyridyl)-amino]-alpha-D-glucopyranosyl-(1----4)-O-alpha- D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D- glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-D-glucose and p-nitrophenyl alpha-glucoside. The maltopentaose derivative is resistant to alpha-glucosidase and is suitable as a substrate for the alpha-amylase assay coupled with alpha-glucosidase in which the activity of alpha-amylase is determined by measuring the amount of p-nitrophenol liberated by alpha-glucosidase from p-nitrophenyl alpha-glucoside and p-nitrophenyl alpha-maltoside produced by the action of alpha-amylase. This alpha-amylase assay method was applied for determination of alpha-amylases in human serum.  相似文献   

11.
In the synthesis of 8-methoxycarbonyloctyl O-(alpha-D-galactopyranosyl)-(1----3)-O-(2-acetamido-2-deoxy-beta-D- mannopyranosyl)-(1----4)-O-(beta-D-glucopyranosyl)-(1----4)-alpha-D- glucopyranoside, which represents a component of the capsular polysaccharide of Streptococcus pneumoniae type 9V, the key step was the coupling of alpha-D-Galp-(1----3)-beta-D-ManpNAc-(1----4)-D-Glc as glycosyl donor with 8-ethoxy-carbonyloctyl 6-O-acetyl-2,3-di-O-benzyl-alpha-D-glucopyranoside as glycosyl acceptor by use of the imidate method. Only the beta-imidate of the trisaccharide could be employed in this glycosidation reaction to give stereoselectively the tetrasaccharide in high yield. The alpha-imidate of the trisaccharide led to hydrolysis of the imidate group.  相似文献   

12.
The capsular polysaccharide of Streptococcus pneumoniae serotype 6B [----2)-alpha-D-Galp-(1----3)-alpha-D-Glcp-(1----3)-alpha-L-Rhap-( 1----4)- D-RibOH-(5-P----]n was depolymerised under alkaline (NaOH) and acidic (HF) conditions. The former treatment yielded, as the major component, alpha-2-P-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-5- P-RibOH. The latter treatment at -16 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH-(5-P----2)- alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH and at 4 degrees gave alpha-Galp-(1----3)-alpha-Glcp-(1----3)-alpha-Rhap-(1----4)-Rib OH. These oligosaccharides were characterised by sugar analysis, f.a.b.-m.s., and 1H- and 13C-n.m.r. spectroscopy.  相似文献   

13.
The hydrogen bonding in the crystal structure of raffinose pentahydrate   总被引:1,自引:0,他引:1  
The crystal structure of raffinose pentahydrate, O-alpha-D-galactopyranosyl-(1----6)-O-alpha-D-glucopyranosyl-(1----2)- beta-D- fructofuranose pentahydrate, C18H32O16.5H2O, has been redetermined using low-temperature, 119 K, CuK alpha X-ray data. All hydrogen atoms were unambiguously located on difference syntheses. The final R-factor is 0.036 for 2423 observed structure amplitudes. The hydrogen bonding is composed of infinite chains, which are linked through the water molecules to form a three-dimensional network containing a chain of five linked water molecules. Three of the infinite chains extend in the directions of the crystallographic axis of the space group P2(1)2(1)2(1). Four of the water molecules accept two hydrogen bonds and one accepts one. All the hydroxyls and the ring and glycosidic oxygen atoms are involved in the hydrogen bonding. With one exception, the ring and glycosidic oxygens are hydrogen-bonded by means of the minor components of unsymmetrical three-center bonds.  相似文献   

14.
Glycosylation of methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside with 2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl bromide gave methyl 2,4-di-O-benzoyl-3-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl) -alpha-L-rhamnopyranoside (4) in 93% yield. Conversion of 4 into the corresponding glycosyl bromide was accomplished with dibromomethyl methyl ether. Under Koenigs-Knorr conditions, this bromide reacted with 8-(methoxycarbonyl)octyl 2-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glycopyranosyl)- 3,4-di-O- benzyl-alpha-L-rhamnopyranoside, to provide the protected tetrasaccharide in 91% yield. Removal of blocking groups gave 8-(methoxycarbonyl)octyl O-alpha-L-rhamnopyranosyl-(1---- 3)-O-alpha-L-rhamnopyranosyl-(1---- 3)-O-2-acetamido-2-deoxy-beta-D-glucopyranosyl-(1----2)-alpha-L- rhamnopyranoside. Together with previously synthesized tetrasaccharides of the Shigella flexneri Y O-antigen, this oligosaccharide has been used to study the conformation of O-antigens and to assist in the selection of S. flexneri, variant Y, specific monoclonal antibodies.  相似文献   

15.
The synthesis of the oligosaccharides beta-D-Xylp-(1----2)-beta-D-Manp-OMe (12), beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----6)]-beta-D-Manp+ ++-OMe (17), beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----3)]-beta-D-Manp+ ++-OMe (21), and beta-D-Xylp-(1----2)-[alpha-D-Manp-(1----3)] [alpha-D-Manp-(1----6)]-beta-D-Manp-OMe (25) is described. Methyl 3-O-benzyl-4,6-O-isopropylidene-beta-D-mannopyranoside (6) was prepared from the corresponding glucoepimer (4) by oxidation, followed by stereoselective reduction. Condensation of 6 with 2,3,4-tri-O-acetyl-alpha-D-xylopyranosyl bromide in the presence of mercuric cyanide gave a 1:9 mixture of methyl 3-O-benzyl-4,6-O-isopropylidene-2-O-(2,3,4- tri-O-acetyl-alpha- (7a) and -beta-D-xylopyranosyl)-beta-D-mannopyranoside (7), and then 7 was converted into the acetylated disaccharide-glycoside 11. Regioselective mannosylation, with 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide, at position 6 of deisopropylidenated 7 (8), using mercuric bromide as a promoter, afforded the trisaccharide-glycoside derivative 13, which was transformed into the acetylated trisaccharide-glycoside 16. The disaccharide derivative 10, obtained from 8, and the trisaccharide derivative 15, obtained from 13, were glycosylated at position 3 with O-(2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl)trichloroacetimidate (19), using trimethylsilyl triflate as a promoter, giving rise to acetylated tri- (20) and tetra-saccharide (24) derivatives, respectively. O-Deacetylation of 11, 16, 20, and 24 gave 12, 17, 21, and 25, respectively.  相似文献   

16.
The conformational analysis of the recently synthesized tetrasaccharides alpha-D-Manp (1----3)-[alpha-D-Manp-(1----6)]-4-deoxy-beta-D-lyx-hexp+ ++-(1----4)-D-GlcNAc (2) and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)-D-GlcNAc (3) will be described. The preferred solution conformation of 2 and 3 is a gt-conformation, which is nearly identical with the preferred conformation of the naturally occurring tetrasaccharide alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-D-GlcNAc (1). The main structural feature is the backfolding of the alpha-(1----6)-linked D-Man to the reducing D-GlcNAc unit. Conformational analysis of the tetrasaccharides alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-1,6- anhydro-beta-D-GlcNAc (4), alpha-D-Manp-(1----3)-alpha-D-Manp-(1----6)]-4-deoxy-beta-D- lyx-hexp-(1----4)- 1,6-anhydro-beta-D-GlcNAc (5), and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)- 1,6-anhydro-beta-D-GlcNAc (6) gave additional proof for this backfolding. The substitution of the reducing unit leads to a smaller amount of gt- and a greater amount of gg-conformers. The method used for conformational analysis of 2-6 is a combination of n.m.r.-experiments and HSEA-calculations with the program GESA. Concerning the application of new 2D-techniques, the COLOC-experiment turned out to be extremely useful in sequencing oligosaccharides.  相似文献   

17.
Stereoselective, total synthesis of O-alpha-D-galactopyranosyl-(1----4) -O-beta-D-galactopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-N -tetracosanoyl-[2S,3R,4E (and 4Z)]-sphingenine and O-alpha-D -galactopyranosyl-(1----3)-O-beta-D-galactopyranosyl-(1----4)-O-beta-D -glucopyranosyl-(1----1)-N-tetracosanoyl-(2S,3R,4E)-sphin gen ine was achieved by using O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl) -(1----4)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6- tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate, O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl) -(1----4)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6- tri-O-acetyl-alpha (and beta)-D-glucopyranosyl fluoride, and O-(2,3,4,6-tetra-O-acetyl-alpha-D -galactopyranosyl)-(1----3)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyran osyl)-(1----4)-2,3,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate.  相似文献   

18.
Bromoacetylation of methyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (1) followed by cleavage of the methoxyl group from the resulting 6-O-bromoacetyl derivative 2 with 1,1-dichloromethyl methyl ether gave 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl chloride (3). Reaction of 3 with 1, promoted by silver trifluoromethanesulfonate, afforded methyl O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (12), bearing at O-6 of its non-reducing end-group the selectively removable bromoacetyl group. This was O-debromoacetylated and the disaccharide nucleophile 15 formed was again treated with 3, to give the analogous trisaccharide 18. This sequence of reactions was repeated to afford the analogous tetrasaccharide 20, showing the feasibility of stepwise construction of the title oligosaccharides. Similar reactions of 3 with 1,2,3,4-tetra-O-benzoyl-alpha- (7) and beta-D-galactopyranose (5) gave, respectively, O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -1,2,3,4-tetra-O-benzoyl-alpha- (14) and beta-D-galactopyranose (13). These could be separately converted into the same glycosyl halide, namely, alpha-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1-- --6)-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl chloride (16), by cleavage with 1,1-dichloromethyl methyl ether. The chloride 16 was treated with tri- and tetra-saccharide nucleophiles analogous to 15 to give, respectively, the corresponding pentasaccharide 23 and the hexasaccharide 25, demonstrating the possibility of the blockwise construction of higher beta-(1----6)-linked D-galacto-oligosaccharides. The disaccharide 12 was also obtained by the reaction of 1,2,3,4-tetra-O-benzoyl-6-O-bromoacetyl-beta-D-galactopryanose (6) with 1 in the presence of trimethylsilyl trifluoromethane-sulfonate. Similarly, the trisaccharide 18 and the tetrasaccharide 20 were obtained by the treatment of 13, respectively, with 1 and 15, showing that, as with their 1-O-acetyl counterparts, beta-1-benzoates of saccharides bearing at O-2 a group capable of neighboring-group participation can act under these conditions as glycosyl donors. Crystalline methyl beta-glycosides of (1----6)-beta-D-galacto-tetraose (22), -pentaose (24) and -hexaose (27) have been obtained for the first time, by deacylation (Zemplén) of their fully protected precursors.  相似文献   

19.
A sugar autoanalyzer was used on a preparative scale to resolve a gluco-oligosaccharide mixture. In this way the components of the following mixtures were resolved: O-alpha-D-glucopyranosyl-(1-3)-O-[alpha-D-glucopyranosyl-(1-6)]-D-glucose (1), O-alpha-D-glucopyranosyl-(1-6)-O-alpha-D-glucopyranosyl-(1-3)-D-glucose (2) and O-alpha-D-glucopyranosyl-(1-3)-O-alpha-D-glucopyranosyl-(1-6)-D-glucose (3), O-alpha-D-glucopyranosyl-(1-3)-O-alpha-D-glucopyranosyl-(1-4)-D-glucose (4) and O-alpha-D-glucopyranosyl-(1-4)-O-alpha-D-glucopyranosyl-(1-3)-D-glucose (5), and O-alpha-D-glucopyranosyl-(1-2)-O-alpha-D-glucopyranosyl-(1-6)-O-alpha-D-glucopranosyl-(1-6)-O-alpha-D-glucopyranosyl-(1-6)-D-glucose (6) and O-alpha-D-glucopyranosyl-(1-3)--O-alpha-D-glucopyranosyl-(1-6)-O-alpha-D-glucopyranosyl-(1-6)-O-alpha-D-glucopyranosyl-(1-6)-D-glucose (7).  相似文献   

20.
Sequential tritylation, benzoylation, and detritylation of p-nitrophenyl beta-D-galactopyranoside gave p-nitrophenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (2). Reaction of 2 with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl bromide gave p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (4) in 94% yield. Deprotection with sodium methoxide then gave the crystalline p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-beta-D-galactopyranoside (5). Condensation of 2 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-alpha-D-galactopyranosyl bromide (3) readily yielded the protected disaccharide p-nitrophenyl O-(2,3,4-tri-O-benzoyl-6-O-bromoacetyl-beta-D-galactopyranosyl)-(1----6) -2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (6) from which the bromoacetyl groups could be selectively removed. Condensation of the resulting material with tetra-O-benzoyl-alpha-D-galactopyranosyl bromide then yielded p-nitrophenyl O-(2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-O-(2,3,4 -tri-O-benzoyl-beta-D-galactopyranosyl)-(1----6)-2,3,4-tri-O-benzoyl-bet a-D -galactopyranoside, (8), which was converted into the crystalline trisaccharide p-nitrophenyl O-(beta-D-galactopyranosyl)-(1----6)-O-beta-D-galactopyranosyl)-(1----6) -beta -D-galactopyranoside (9) by treatment with sodium methoxide. Preliminary experiments on the interaction of p-(bromoacetamido)phenyl and p-isothiocyanatophenyl glycoside derivatives of some of these galacto-saccharides with monoclonal anti-(1----6)-beta-D-galactopyranan antibodies have been conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号