首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
丹皮多糖PSM2b体外对小鼠免疫细胞功能的影响   总被引:8,自引:1,他引:7  
中药丹皮提取的丹皮多糖有效部位PSM2b在体外能直接促进小鼠脾细胞增殖,并能协同ConA诱导的脾细胞增殖作用,对小鼠腹腔巨噬细胞亦有激活作用,可增强小鼠腹腔巨噬细胞吞噬中性红,诱导巨噬细胞合成一氧化氮。结论:PSM2b可增强T淋巴细胞功能,并对巨噬细胞具有激活作用。  相似文献   

2.
本研究旨在分析小麦蛋白活性肽对免疫抑制小鼠免疫功能和抗氧化功能的调节作用。小鼠灌胃小麦肽10d,第8天用环磷酰胺诱导免疫抑制,测定血清溶血素、抗体生成细胞含量、脾细胞增殖、体外腹腔巨噬细胞吞噬能力、肝脏抗氧化酶活性和丙二醛(MDA)含量以及血清清除DPPH和·OH的能力。实验结果表明,环磷酰胺处理显著的降低了小鼠血清中抗SRBC抗体(溶血素HC50)水平和腹腔巨噬细胞的吞噬能力;同时伴随着肝脏超氧化物歧化酶活性(SOD)、过氧化氢酶活力(CAT)、总抗氧化能力(T-AOC)的降低和MDA含量的提高。给小鼠灌胃小麦肽可以恢复HC50和脾细胞增殖,显著提高抗体生成细胞含量和腹腔巨噬细胞吞噬能力;此外,小麦肽增强了小鼠血清清除DPPH和清除·OH的能力。以上结果表明,小麦肽可以调节应激状态引起的机体抗氧化体系紊乱及免疫功能的降低。这可能与小麦肽缓冲自由基生成、激活腹腔巨噬细胞和脾淋巴细胞活性有关。  相似文献   

3.
研究将对巨噬细胞双重功能均具有激活作用的细胞因子GM-CSF的基因转染小鼠腹腔巨噬细胞,再经肿瘤抗原致敏后通过静脉注射用于实验性CT26结肠癌肺转移小鼠的治疗.结果表明,腺病毒介导的GM-CSF基因转染小鼠腹腔巨噬细胞在转染后4h即可分泌较高水平的GM-CSF.转染后10d仍可有效表达;转染后16h左右小鼠腹腔巨噬细胞MHCⅡ类分子的表达明显增强,其抗原提呈能力也达最高水平;对肿瘤细胞的杀伤活性显著增高;荷瘤3d的实验性CT26结肠癌肺转移小鼠经肿瘤抗原致敏的GM-CSF基因转染巨噬细胞治疗后第16天肺部转移结节数明显减少;经治疗小鼠脾细胞经诱导的CTL杀伤活性也明显升高.以上结果提示,GM-CSF基因转染及表达能有效增强小鼠腹腔巨噬细胞的抗原提呈能力及效应功能;经肿瘤抗原刺激后其对转移性肿瘤也有明显的治疗作用.  相似文献   

4.
丹皮多糖对α-葡萄糖苷酶作用的影响   总被引:7,自引:0,他引:7  
研究丹皮多糖(PSM2b)对α-葡萄糖苷酶作用的影响,探索其降血糖作用的途径。通过建立体外酶-抑制剂模型,测定丹皮多糖PSM2b及其分级分离组分对酶作用的抑制率。结果显示PSM2b的分级分离组分PSM2b-1,PSM2b-2,PSM2b-3在体外对α-葡萄糖苷酶有一定的抑制作用,PSM2b对酶的抑制作用不明显。  相似文献   

5.
双歧杆菌和乳杆菌在诱发抗肿瘤免疫中的作用   总被引:5,自引:1,他引:5  
双歧杆菌和乳杆菌给封闭群昆明小鼠腹腔注射,在体内激活后,胸腺细胞和脾细胞对ConA刺激的增殖反应,脾贴附性细胞对YAC-1,L929的细胞毒作用,以及脾贴附性细胞产生对上述二株瘤细胞的肿瘤坏死因子(TNF)的活性都比对照动物明显增强。结果提示短双歧杆菌和嗜酸性乳杆菌给小鼠腹腔注射后,通过激活脾脏淋巴细胞和贴附性细胞(巨噬细胞)所介导的免疫功能而明显地增强宿主的抗肿瘤活性。  相似文献   

6.
目的研究乳酸杆菌DM9811发酵滤液中存在的100200 bp长的RNA片段(Ls-RNA)的免疫调节与抗肿瘤作用。方法采用中性红吞噬试验检测巨噬细胞吞噬功能,用L929细胞检测TNF,用免疫保护试验检测体内抗肿瘤作用。结果Ls-RNA可增强脾巨噬细胞的吞噬活性,对小鼠肝癌Hca-F的生长有抑制作用,延长小鼠的存活时间,但对TG诱导的腹腔巨噬细胞产生TNF无明显调节作用。结论Ls-RNA有一定免疫调节和抗肿瘤作用。  相似文献   

7.
为观察雪灵芝粗多糖(Arenaria kansuensis crude polysaccharide,AKCP)对体外培养的小鼠脾淋巴细胞、NK细胞和腹腔巨噬细胞增殖与功能的影响。以不同浓度AKCP作用于体外培养的上述细胞48 h,采用中性红吞噬实验及NO释放实验检测巨噬细胞功能,MTT法检测脾淋巴细胞增殖及NK细胞杀伤活性,流式细胞术检测脾淋巴细胞CD3~+、CD4~+、CD8~+亚群,ELISA法检测脾细胞培养上清中IL-2和IFN-γ水平。结果显示,AKCP各浓度组小鼠腹腔巨噬细胞的吞噬活性和NO释放量、脾淋巴细胞刺激指数及培养上清中IFN-γ水平、NK细胞杀伤活性均高于空白对照组(P0.05);AKCP中浓度组脾淋巴细胞CD3~+、CD4~+亚群及培养上清中IL-2水平也明显升高(P0.05)。提示AKCP对小鼠免疫细胞的增殖与功能具有体外激活作用。  相似文献   

8.
本文报道了转移因子对小鼠腹腔巨噬细胞吞噬功能的影响和对脾细胞E玫瑰花形成的作用。转移因子为本单位从健康猪脾细胞提取的针剂,含多核苷酸和多肽等低分子生物活性物质,每支含量为3×10~3个脾细胞提取物,每天一次0.5ml剂量注入小鼠体内,连续5次后取动物腹腔巨噬细胞和脾细胞悬液,测定其吞噬功能并观察E玫瑰花形成作用。结果表明,转移因子对小鼠腹腔巨噬细胞吞噬的百分率和吞噬指数与对照组比有明显差异(P<0.01),对小鼠脾细胞E玫瑰花形成作用与对照组比差异也极显著(P<0.01)。从而看出,转移因子能使小鼠腹腔巨噬细胞吞噬功能增强,亦能使特异的玫瑰花形成细胞中T淋巴细胞增多,增强了机体的免疫功能。  相似文献   

9.
一种双歧杆菌胞外多糖免疫调节功能研究   总被引:2,自引:1,他引:2  
根据保健食品功能评价规范?功能学评价程序研究一种双歧杆菌胞外多糖(Bifidobacterium spp. exopolysaccharide, EPS)的免疫调节功能。通过脾淋巴细胞增殖反应、绵羊红细胞诱导小鼠迟发型变态反应(DTH)、血清溶血素测定以及巨噬细胞吞噬实验探讨该EPS的免疫调节活性。EPS分别以高、中、低剂量组连续口服给药10天, 结果发现低剂量的EPS[100 mg/(kg·d)]可以促进脾淋巴细胞增殖; 高、中、低剂量对绵羊红细胞诱导的小鼠迟发型变态反应均无促进作用; 但是, EPS 高、中、低剂量组均能明显提高小鼠血清半数溶血值HC50以及增强小鼠腹腔巨噬细胞吞噬鸡红细胞的吞噬能力。根据规范可知, 该双歧杆菌EPS 具有一定的免疫调节活性。  相似文献   

10.
马齿苋多糖对S180荷瘤小鼠免疫功能的影响   总被引:6,自引:0,他引:6  
本文探讨马齿苋多糖对S180荷瘤小鼠免疫功能的影响。马齿苋采用水提醇沉法得到马齿苋多糖,分别以50、100、200mg/kg通过腹腔给药10d,观察马齿苋多糖对S180荷瘤小鼠的抑瘤作用及对小鼠淋巴细胞转化功能、腹腔巨噬细胞的吞噬能力、白介素-l(IL-1)和白介素-2(IL-2)生成量的影响。结果显示,马齿苋多糖对S180荷瘤小鼠有明显的抑瘤作用,抑瘤率分别为16.92%、51.45%和64.96%。不同剂量马齿苋多糖与对照组相比可明显促进淋巴细胞的转化、小鼠腹腔巨噬细胞吞噬能力,可有效的增加荷瘤小鼠脾淋巴细胞的转化和腹腔巨噬细胞的吞噬能力以及白介素-1(IL-1)和白介素-2(IL-2)的分泌。说明马齿苋多糖对S180荷瘤小鼠具有显著的抗肿瘤作用,其作用机制与增强小鼠免疫作用有关。  相似文献   

11.
This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.  相似文献   

12.
Elevated plasma levels of homocysteine (Hcy) are associated with the development of coronary artery disease (CAD), peripheral vascular disease, and atherosclerosis. Hyperhomocysteinemia is likely related to the enhanced production of pro-inflammatory cytokines including IL-1β. However, the mechanisms underlying the effects of Hcy in immune cells are not completely understood. Recent studies have established a link between macrophage accumulation, cytokine IL-1β, and the advance of vascular diseases. The purpose of the present study is to investigate the effects of Hcy on IL-1β secretion by murine macrophages. Hcy (100 μM) increases IL-1β synthesis via enhancement of P2X7 expression and NF-ĸB and ERK activation in murine macrophages. In addition, the antioxidant agent N-acetylcysteine (NAC) reduces NF-κB activation, ERK phosphorylation, and IL-1β production in Hcy-exposed macrophages, indicating the importance of ROS in this pro-inflammatory process. In summary, our results show that Hcy may be involved in the synthesis and secretion of IL-1β via NF-ĸB, ERK, and P2X7 stimulation in murine macrophages.  相似文献   

13.
9-Alkyl and 9-heteroalkyl substituted derivatives of the 2-amino-6-guanidinopurine were synthesized by alkylation of 2-amino-6-chloropurine and subsequent guanidinolysis. The activity of the thus prepared compounds on murine macrophages was examined. Compounds 4a, 4b, and 4d inhibit the LPS+IFN-gamma-induced NO production in murine macrophages while compound 4h stimulates this production.  相似文献   

14.
Macrophage differentiation and polarization is influenced by, and act on, many processes associated with autoimmunity. However, the molecular mechanisms underlying macrophage polarization in systemic lupus erythematosus (SLE) remain largely debated. We previously demonstrated that macrophage M2b polarization conferred by activated lymphocyte-derived (ALD)-DNA immunization could initiate and propagate murine lupus nephritis. Serum amyloid P component (SAP), a conserved acute-phase protein in mice, has been reported to bind to DNA and modulate immune responses. In this study, murine SAP was shown to promote macrophage-mediated ALD-DNA uptake through binding to ALD-DNA (SAP/ALD-DNA). Moreover, macrophage phenotypic switch from a proinflammatory M2b phenotype induced by ALD-DNA alone to an anti-inflammatory M2a phenotype stimulated with SAP/ALD-DNA were found because of PI3K/Akt-ERK signaling activation. Both in vivo SAP supplements and adoptive transfer of ex vivo programmed M2a macrophages induced by SAP/ALD-DNA into SLE mice could efficiently alleviate lupus nephritis. Importantly, increased IL-10 secretion, accompanied by anti-inflammatory effect exerted by M2a macrophages, was found to predominantly impede macrophage M2b polarization. Furthermore, neutralization of IL-10 notably reduced the suppressive effect of M2a macrophages. Our results demonstrate that binding of SAP to ALD-DNA could switch macrophage phenotypic polarization from proinflammatory M2b to anti-inflammatory M2a via PI3K/Akt-ERK signaling activation, thus exerting protective and therapeutic interventions on murine lupus nephritis. These data provide a possible molecular mechanism responsible for modulation of macrophage polarization in the context of lupus nephritis and open a new potential therapeutic avenue for SLE.  相似文献   

15.
Anthrax is an infectious disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis. To identify the mitochondrial proteins that are expressed differently in murine macrophages infected with spores of B. anthracis Sterne, proteomic and MALDI-TOF/MS analyses of uninfected and infected macrophages were conducted. As a result, 13 mitochondrial proteins with different expression patterns were discovered in the infected murine macrophages, and some were identified as ATP5b, NIAP-5, ras-related GTP binding protein B isoform CRAa, along with several unnamed proteins. Among these proteins, ATP5b is related to energy production and cytoskeletal rearrangement, whereas NIAP-5 causes apoptosis of host cells due to binding with caspase-9. Therefore, this paper focused on ATP5b, which was found to be downregulated following infection. The downregulated ATP5b also reduced ATP production in the murine macrophages infected with B. anthracis spores. Consequently, this study represents the first mitochondrial proteome analysis of infected macrophages.  相似文献   

16.
Macrophages play a key role in the innate immune system. Macrophages are thought to originate from hematopoietic precursors or the yolk sac. Here, we describe the in vitro establishment of self-renewable GM-CSF-dependent immature macrophages (GM-IMs) from murine bone marrow (BM). GM-IMs grow continuously in vitro in conditioned medium containing GM-CSF. The immunophenotype of GM-IMs is F4/80high CD11bhigh CD11clow Ly6Clow. By comparing gene expression in GM-IMs and BM dendritic cells, we found that GM-IMs expressed lower levels of chemokines, cytokines and their receptors. GM-IMs are round in shape, attach loosely to non-coated culture dishes and have a marked phagocytic capacity. These results indicate that GM-IMs are macrophage precursor cells. Following stimulation with LPS, monocyte-like GM-IMs converted to flat macrophage-like cells that tightly adhered to non-coated culture dishes and produced pro-inflammatory cytokines TNFα, IL-6 and IL-1β. These results indicated that GM-IMs differentiated to M1 pro-inflammatory macrophages. This was confirmed by stimulation of GM-IMs with IFNγ, an inducer of M1 markers. GM-IMs showed enhanced expression of M2 macrophage markers such as Arg1 and Retnla following stimulation by Th2 cytokines IL-4 and IL-13. When GM-IMs were injected into mice at sites of wounding, wound repair was enhanced. These results indicate that GM-IMs can differentiate to M2 macrophages. When GM-IMs were injected into clodronate-treated mice, they induced resident macrophage proliferation by producing M-CSF. In conclusion we have established self-renewable GM-CSF-dependent immature macrophages in vitro from murine BM, which differentiate to M1 or M2 macrophages.  相似文献   

17.
Chronic obstructive pulmonary disease (COPD) is characterized by intense lung infiltrations of immune cells (macrophages and monocytes). Lipopolysaccharide (LPS) activates macrophages/monocytes, leading to production of tumor necrosis factor α (TNFα) and other cytokines, which cause subsequent lung damages. In the current study, our results demonstrated that AS-703026, a novel MEK/ERK inhibitor, suppressed LPS-induced TNFα mRNA expression and protein secretion in RAW 264.7 murine macrophages, and in murine bone marrow-derived macrophages (BMDMs). Meanwhile, TNFα production in LPS-stimulated COPD patents’ peripheral blood mononuclear cells (PBMCs) was also repressed by AS-703026. At the molecular level, we showed that AS-703026 blocked LPS-induced MEK/ERK activation in above macrophages/monocytes. However, restoring ERK activation in AS-703026-treated RAW 264.7 cells by introducing a constitutive-actively (CA)-ERK1 only partially reinstated LPS-mediated TNFα production. Meanwhile, AS-703026 could still inhibit TNFα response in ERK1/2-depleted (by shRNA) RAW 264.7 cells. Significantly, we found that AS-703026 inhibited LPS-induced nuclear factor κB (NFκB) activation in above macrophages and COPD patients’ PBMCs. In vivo, oral administration of AS-703026 inhibited LPS-induced TNFα production and endotoxin shock in BALB/c mice. Together, we show that AS-703026 in vitro inhibits LPS-induced TNFα production in macrophages/monocytes, and in vivo protects mice from LPS-induced endotoxin shock. Thus, it could be further studied as a useful anti-inflammatory therapy for COPD patients.  相似文献   

18.
SerpinB2 or plasminogen activator inhibitor type 2 (PAI-2) is highly induced in macrophages in response to inflammatory stimuli and is linked to the modulation of innate immunity, macrophage survival, and inhibition of plasminogen activators. Lipopolysaccharide (LPS), a potent bacterial endotoxin, can induce SerpinB2 expression via the toll-like receptor 4 (TLR4) by ∼1000-fold over a period of 24 hrs in murine macrophages. To map the LPS-regulated SerpinB2 promoter regions, we transfected reporter constructs driven by the ∼5 kb 5''-flanking region of the murine SerpinB2 gene and several deletion mutants into murine macrophages. In addition, we compared the DNA sequence of the murine 5′ flanking sequence with the sequence of the human gene for homologous functional regulatory elements and identified several regulatory cis-acting elements in the human SERPINB2 promoter conserved in the mouse. Mutation analyses revealed that a CCAAT enhancer binding (C/EBP) element, a cyclic AMP response element (CRE) and two activator protein 1 (AP-1) response elements in the murine SerpinB2 proximal promoter are essential for optimal LPS-inducibility. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated that LPS induces the formation of C/EBP-β containing complexes with the SerpinB2 promoter. Importantly, both constitutive and LPS-induced SerpinB2 expression was severely abrogated in C/EBP-β-null mouse embryonic fibroblasts (MEFs) and primary C/EBP-β-deficient peritoneal macrophages. Together, these data provide new insight into C/EBP-β-dependent regulation of inflammation-associated SerpinB2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号