首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genes responsible for maltose utilization from Bacillus stearothermophilus ATCC7953 were cloned in the plasmid vector pBR325 and functionally expressed in Escherichia coli. The 4.2 kb Bacillus DNA insert in clone pAM1750 suppressed the growth defects on maltose caused by mutations in E. coli maltose transport genes (malE, malK or complete malB deletion) but not mutations in genes affecting intracellular maltose metabolism (malA region). Transport studies in E. coli and B. stearothermophilus suggested that pAM1750 codes for a high affinity transport system, probably one of two maltose uptake systems found in B. stearothermophilus ATCC7953. Nucleotide sequence analysis of a 3.6 kb fragment of pAM 1750 revealed three open reading frames (ORFs). One of the ORFs, malA, encoded a putative hydrophobic protein with 12 potential transmembrane segments. MalA showed amino acid sequence similarity to proteins in the superfamily containing LacY lactose permease and also some similarity to MaIG protein, a member of a binding protein-dependent transport system in E. coli. The products of two other ORFs were not hydrophobic, did not show similarity to other known sequences and were found not to be essential for maltose utilization in transport-defective E. coli mutants. Hence MalA protein was the only protein necessary for maltose transport, but despite giving a detectable but low level of transport function in E. coli, the protein was very poorly expressed and could not be identified.  相似文献   

2.
3.
Mycobacterium smegmatis contains 6 homologous mce (mammalian cell entry) operons which have been proposed to encode ABC‐like import systems. The mce operons encode up to 10 different proteins of unknown function that are not present in conventional ABC transporters. We have analysed the consequences of individually deleting each of the genes of the mce4 operon of M. smegmatis, which mediates the transport of cholesterol. None of the mce4 mutants were able to grow in cholesterol suggesting that all these genes are required for its uptake and that none of them can be replaced by the homologous genes of the other mce operons. This result suggests that different mce operons do not provide redundant capabilities and that M. smegmatis, in contrast with Mycobacterium tuberculosis, is not able to use alternative systems to import cholesterol in the analysed culture conditions. Either deletion of the entire mce4 operon or single point mutations that eliminate the transport function cause a phenotype similar to the one observed in a mutant lacking all 6 mce operons suggesting a pleiotropic role for this system.  相似文献   

4.
5.
To identify Rhodobacter capsulatus nif genes necessary for the alternative nitrogenase, strains carrying defined mutations in 32 genes and open reading frames of nif region A, B or C were constructed. The ability of these mutants to grow on nitrogen-free medium with molybdenum (Nif phenotype) or in a nifHDK deletion background on medium without molybdenum (Anf phenotype) was tested. Nine nif genes and nif-associated coding regions are absolutely essential for the alternative nitrogenase. These genes comprise nifV and nifB, the nif-specific ntr system (nifR1, R2, R4) and four open reading frames, which exhibit no homology to known genes. In addition, a significantly reduced activity of both the alternative nitrogenase and the molybdenum-dependent nitrogenase was found for fdxN mutants. By random Tn5 mutagenesis of a nifHDK deletion strain 42 Anf? mutants were isolated. Southern hybridization experiments demonstrated that 17 of these Tn5 mutants were localized in at least 13 different restriction fragments outside of known nif regions. Ten different Anf? Tn5 mutations are clustered on a 6 kb DNA fragment of the chromosome designated anf region A. DNA sequence analysis revealed that this region contained the structural genes of the alternative nitrogenase (anfHDGK). The identification of several Tn5 insertions mapping outside of anf region A indicated that at least 10 genes specific for the alternative nitrogenase are present in R. capsulatus.  相似文献   

6.
Genes responsible for maltose utilization from Bacillus stearothermophilus ATCC7953 were cloned in the plasmid vector pBR325 and functionally expressed in Escherichia coli. The 4.2 kb Bacillus DNA insert in clone pAM1750 suppressed the growth defects on maltose caused by mutations in E. coli maltose transport genes (malE, malK or complete malB deletion) but not mutations in genes affecting intracellular maltose metabolism (malA region). Transport studies in E. coli and B. stearothermophilus suggested that pAM1750 codes for a high affinity transport system, probably one of two maltose uptake systems found in B. stearothermophilus ATCC7953. Nucleotide sequence analysis of a 3.6 kb fragment of pAM 1750 revealed three open reading frames (ORFs). One of the ORFs, malA, encoded a putative hydrophobic protein with 12 potential transmembrane segments. MalA showed amino acid sequence similarity to proteins in the superfamily containing LacY lactose permease and also some similarity to MaIG protein, a member of a binding protein-dependent transport system in E. coli. The products of two other ORFs were not hydrophobic, did not show similarity to other known sequences and were found not to be essential for maltose utilization in transport-defective E. coli mutants. Hence MalA protein was the only protein necessary for maltose transport, but despite giving a detectable but low level of transport function in E. coli, the protein was very poorly expressed and could not be identified.  相似文献   

7.
An insertion mutation was isolated that resulted in derepressed expression of the Bacillus subtilis dipeptide transport operon (dpp) during the exponential growth phase in rich medium. DNA flanking the site of insertion was found to encode an operon (codVWXY) of four potential open reading frames (ORFs). The deduced product of the codV ORF is similar to members of the λ Int family; CodW and CodX are homologous to HsIV and HsIU, two putative heat-shock proteins from Escherichia coli, and to LapC and LapA, two gene products of unknown function from Pasteurella haemolytica. CodX also shares homology with a family of ATPases, including CIpX, a regulatory subunit of the E. coli ClpP protease. CodY does not have any homologues in the databases. The insertion mutation and all previously isolated spontaneous cod mutations were found to map In codY. In-frame deletion mutations in each of the other cod genes revealed that only codY is required for repression of dpp in nutrient-rich medium. The cody mutations partially relieved amino acid repression of the histidine utilization (hut) operon but had no effect on regulation of certain other early stationary phase-induced genes, such as spoVG and gsiA.  相似文献   

8.
9.
10.
11.
12.
Comparative Genomic Hybridization (CGH) microarray analysis was used to compare the genomic compositions of all eighteen Shigella boydii serotype representative strains. The results indicated the genomic “backbone” of this subgroup contained 2552 ORFs homologous to nonpatho-genic E. coli K12. Compared with the genome of K12199 ORFs were found to be absent in all S. boydii serotype representatives, including mainly outer membrane protein genes and O-antigen biosynthesis genes. Yet the specific ORFs of S. boydii subgroup contained basically bacteriophage genes and the function unknown (FUN) genes. Some iron metabolism, transport and type II secretion system related genes were found in most representative strains. According to the CGH phylogenetic analysis, the eighteen S. boydii serotype representatives were divided into four groups, in which serotype C13 strain was remarkably distinguished from the other serotype strains. This grouping result corresponded to the distribution of some metabolism related genes. Furthermore, the analysis of genome backbone genes, specific genes, and the phylogenetic trees allowed us to discover the evolution laws of S. boydii and to find out important clues to pathogenesis research, vaccination and the therapeutic medicine development.  相似文献   

13.
Comparative Genomic Hybridization (CGH) microarray analysis was used to compare the genomic compositions of all eighteen Shigella boydii serotype representative strains. The results indicated the genomic “backbone” of this subgroup contained 2552 ORFs homologous to nonpathogenic E. coli K12. Compared with the genome of K12199 ORFs were found to be absent in all S. boydii serotype representatives, including mainly outer membrane protein genes and O-antigen biosynthesis genes. Yet the specific ORFs of S. boydii subgroup contained basically bacteriophage genes and the function unknown (FUN) genes. Some iron metabolism, transport and type II secretion system related genes were found in most representative strains. According to the CGH phylogenetic analysis, the eighteen S. boydii serotype representatives were divided into four groups, in which serotype C13 strain was remarkably distinguished from the other serotype strains. This grouping result corresponded to the distribution of some metabolism related genes. Furthermore, the analysis of genome backbone genes, specific genes, and the phylogenetic trees allowed us to discover the evolution laws of S. boydii and to find out important clues to pathogenesis research, vaccination and the therapeutic medicine development.  相似文献   

14.
Identification of functional open reading frames in chloroplast genomes   总被引:7,自引:0,他引:7  
K H Wolfe  P M Sharp 《Gene》1988,66(2):215-222
We have used a rapid computer dot-matrix comparison method to identify all DNA regions which have been evolutionarily conserved between the completely sequenced chloroplast genomes of tobacco and a liverwort. Analysis of these regions reveals 74 homologous open reading frames (ORFs) which have been conserved as to length and amino acid sequence; these ORFs also have an excess of nucleotide substitutions at silent sites of codons. Since the nonfunctional parts of these genomes have become saturated with mutations and show no sequence similarity whatsoever, the homologous ORFs are almost certainly functional. A further four pairs of ORFs show homology limited to only a short part of their putative gene products. Amino acid sequence identities range between 50 and 99%; some chloroplast proteins are seen to be among the most slowly evolving of all known proteins. A search of the nucleotide and amino acid sequence databanks has revealed several previously unidentified genes in chloroplast sequences from other species, but no new homologies to prokaryotic genes.  相似文献   

15.
A region homologous to the TL-DNA of Agrobacterium rhizogenes was previously detected in the genome of untransformed Nicotiana glauca and designated cellular T-DNA (cT-DNA). Subsequently, part of this region was sequenced and two genes, which corresponded to rolB and rolC and were named NgrolB and NgrolC, were found. We have now sequenced a region of the cT-DNA other than the region that includes NgrolB and C and we have found two other open reading frames (ORFs), NgORF13 and NgORF14. These ORFs correspond to ORFs 13 and 14 of the TL-DNA of A. rhizogenes and exhibit a high degree of homology to these ORFs, without having a nonsense codon. We have not found any sequence homologous to rolD (ORF15). The two genes, NgORF13 and 14, as well as the NgrolB and C genes, are expressed in genetic tumors of hybrids between N. glauca and N. langsdorffii but not in leaf tissues of the hybrid.  相似文献   

16.
17.
The four overlapping cosmids from the rubradirin producer, Streptomyces achromogenes var rubradiris NRRL 3061, have 58 ORFs within a 105.6 kb fragment. These ORFs harbored essential genes responsible for the formation and attachment of four distinct moieties, along with the genes associated with regulatory, resistance, and transport functions. The PKS (rubA) and glycosyltransferase (rubG2) genes were disrupted in order to demonstrate a complete elimination of rubradirin production. The rubradirin biosynthetic pathway was proposed based on the putative functions of the gene products, the functional identification of sugar genes, and the mutant strains. The GeneBank accession number for the sequence reported in this paper is AJ871581.  相似文献   

18.
Summary Transport of vitamin B12 across the cytoplamic membrane ofEscherichia coli requires the products ofbtuC andbtuD, two genes in thebtuCED operon. The role ofbtuE, the central gene of this operon, was examined. Deletions withinbtuE were constructed by removal of internal restriction fragments and were crossed onto the chromosome by allelic replacement. In-frame deletions that removed 20% or 82% of thebtuE coding region did not affect expression of the distalbtuD gene. These nonpolar deletions had little effect on vitamin B12 binding (whole cells or periplasmic fraction) and transport. They did not affect the utilization of vitamin B12 or other cobalamins for methionine biosynthesis, even in strains with decreased outer membrane transport of vitamin B12. ThebtuE mutations did not impair adenosyl-cobalamin dependent catabolism of ethanolamine or repression ofbtuB expression. Thus, despite its genetic location in the transport operon, thebtuE product plays no essential role in vitamin B12 transport.  相似文献   

19.
20.
We have isolated the lysogenic bacteriophage SfII, which mediates glucosylation of Shigella flexneri O-antigen, resulting in expression of the type II antigen. SfII belongs to group A of the Bradley classification and has a genome size of 42.3 kb. DNA sequencing of a 4 kb BamHI subclone identified four open reading frames (ORFs), of which only two were found to be necessary for serotype conversion. These genes were named bgt, which encodes a putative bactoprenol glucosyl transferase, and gtrII, encoding the putative type II antigen determining glucosyl transferase. These genes are adjacent to the integrase gene (int ) and attachment site (attP ), which are highly homologous to those of Salmonella bacteriophage P22. Another ORF encoded a highly hydrophobic protein of 120 amino acids with homologues in Escherichia coli, Salmonella bacteriophage P22 and S. flexneri. Previous studies identified gtrX, the glucosyl transferase gene, of bacteriophage SfX, which also glucosylates the O-antigen specifically. We determined that gtrX-mediated expression of the group 7,8 antigen also requires bgt. This allowed us to identify gtrII as being the serotype antigen II determining glucosyl transferase. Southern hybridization and polymerase chain reaction (PCR) analyses indicated that bgt homologues exist in the genomes of all S. flexneri serotypes and in E. coli K-12, whereas gtrII was only detected in strains of serotype 2. Transposon TnphoA-derived chromosomal mutations of bgt and gtrII in S. flexneri serotype 2a were isolated and characterized. [35S]-methionine labelling and the use of a T7 RNA polymerase expression system identified a protein of 34 kDa corresponding to Bgt. However, GtrII, which has a predicted molecular weight of 55 kDa, was not detected. We propose that the function of Bgt is to transfer the glucose residues from the UDP-glucose onto bactoprenol and GtrII then transfers the glucose onto the O-antigen repeat unit at the rhamnose III position. The chromosomal organization of these serotype-converting genes, when compared with their homologues in E. coli K-12 chromosome and the P22 bacteriophage genome, were very similar. This suggests that the regions encode similar functions in these organisms and have a similar evolutionary origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号