首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants of wheat (Triticum aestivum) were grown at 23°C. After 17 days they were suddenly transferred to 4°C under the same light conditions. The change in temperature produced an increase in the level of sucrose and fructans. Following the chilling shock, enzymes related to sucrose metabolism were measured. The activities of fructose 1,6-biphosphatase, UDPGlc pyrophosphorylase, sucrose phosphate synthase (SPS), UDPase and invertase were not modified even after 8 days at 4°C. On the contrary, the activity of sucrose synthase (SS) (UDP-glucose: D-fructose-2-glucosyl transferase, EC 2.4.1.13) rose continuously, immediately after the chilling shock.  相似文献   

2.
植物蔗糖转运蛋白及其功能调节研究进展   总被引:1,自引:0,他引:1  
综述了高等植物蔗糖转运蛋白基因家族的分类,蔗糖转运蛋白的细胞定位,蔗糖转运蛋白的功能调节,以及果实中糖运转的特性等方面的研究进展,并提出了深入研究果实蔗糖运转蛋白的展望。  相似文献   

3.
蔗糖转运蛋白(sucrose transporter,SUT)负责蔗糖的跨膜运输,在韧皮部介导的源-库蔗糖运输和为库组织供应蔗糖的生理活动中起关键作用。本文介绍植物体内蔗糖转运蛋白基因家族、细胞定位与功能调节以及高等植物的蔗糖感受机制的研究进展。  相似文献   

4.
The absence of sucrose, sucrose synthetase and sucrose phosphate synthetase has been demonstrated by chromatographic, enzymatic and radioisotopic metho  相似文献   

5.
The presence of sucrose and the enzymes related to sucrose metabolism, i.e. sucrose synthase (SS) (UDP-glucose: D-fructose-2-glucosyl transferase, EC 2.4.1.13), sucrose phosphate synthase (SPS) (UDP-glucose: D-fructose-6-phosphate-2-glucosyl transferase, EC 2.4.1.14) and invertase (β-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was demonstrated in Prototheca zopfii, a colorless alga. The levels of enzyme activities were lower than those obtained in Chlorella vulgaris, which is generally considered the photosynthetic counterpart of P. zopfii. Whem enzyme activities were measured in bleached cells of C. vulgaris, the levels were of the same order than those found in P. zopfii. These results would indicate that the sucrose metabolizing enzymes are not related to the algae ability to carry on photosynthesis.  相似文献   

6.
网纹甜瓜发育果实糖分积累与蔗糖代谢参与酶的关系   总被引:29,自引:0,他引:29  
随着网纹甜瓜果实的发育,果实中葡萄糖和果糖的含量增加,蔗糖的快速积累发生在果实发育的中后期,高蔗糖积累型果实中蔗糖积累速率明显快于低蔗糖积累型.蔗糖磷酸合成酶活性在果实发育的前期短暂下降, 而后稳步上升,在果实发育的中后期高蔗糖积累型果实中该酶的活性显著高于低蔗糖积累型果实;随着果实发育,蔗糖合成酶的分解活性降低而合成活性升高.酸性和中性转化酶在未成熟果实中活性较高,而在成熟果实中很低; 高蔗糖积累型果实中酸性转化酶活性显著低于同期低蔗糖积累型果实.合成蔗糖的酶活性小于分解蔗糖的酶活性时蔗糖几乎没有积累.根据这些结果推测,转化酶活性的下降、蔗糖磷酸合成酶活性的增加以及蔗糖合成酶分解活性的下降和合成活性的增加,是引起果实蔗糖积累的主要内在因子.  相似文献   

7.
To unravel the roles of sucrose synthase in carrot, we reduced its activity in transgenic carrot plants by an antisense approach. For this purpose, the cDNA for the main form of carrot sucrose synthase was expressed in antisense orientation behind the 35S promoter of cauliflower mosaic virus. In independent antisense plant lines grown in soil, sucrose synthase activity was reduced in tap roots but not in leaves. In the sink organs, sucrose utilization was markedly decreased and higher levels of sucrose but lower levels of UDP-glucose, glucose, fructose, starch and cellulose were found. The phenotype of the antisense plants clearly differed from that of control plants. Both leaves and roots were markedly smaller, and the antisense line with the lowest sucrose synthase activity also developed the smallest plants. In most of the plant lines, the leaf-to-root dry weight ratios were not changed, suggesting that sucrose synthase in carrot is a major determinant of plant growth rather than of sucrose partitioning. In contrast to the acid invertases, which are critical for partitioning of assimilated carbon between source leaves and tap roots (Tang et al., Plant Cell 11: 177–189 (1999)), sucrose synthase appears to be the main sucrose-cleaving activity, feeding sucrose into metabolism.  相似文献   

8.
9.
The inhibitory effects of sucrose on rates of sucrose synthesis by sucrose phosphate synthase (SPS) from the maize scutellum and on net rates of sucrose production in maize scutellum slices from added glucose or fructose were studied. Scutellum extracts were prepared by freezing and thawing scutellum slices in buffer. The extracts contained SPS and sucrose phosphate phosphatase, but were free of sucrose synthase. SPS activity was calculated from measurement of UDP formation in the presence of UDPG, fructose-6-P and sucrose. The ranges of metabolite concentrations used were those estimated to be in scutellum slices after incubation in water or fructose for periods up to 5 hr. UDPG and fructose-6-P also were added at concentrations that saturated SPS. At saturating substrate levels, sucrose inhibition of SPS was less than that when tissue levels of substrates were used. With tissue levels of substrates and sucrose concentrations up to ca 166 mM, sucrose inhibitions of sucrose synthesis in vitro by SPS were similar to those observed in vivo. However, as the sucrose concentration rose above 166 mM, SPS activity was not inhibited further, whereas there was a further sharp decline in sucrose production by the slices. It is concluded that sucrose synthesis in vivo is controlled by sucrose inhibition of SPS over a considerable range of internal sucrose concentrations.  相似文献   

10.
蔗糖是一类重要的碳水化合物,其代谢与植物生长发育及抵抗胁迫等有密切的关系。蔗糖合成酶(SUS)、蔗糖磷酸合成酶(SPS)与蔗糖转化酶(INV)是参与蔗糖代谢的三类关键酶。本研究依据转录组测序数据,从能源植物菊芋中鉴定了2个SUS、2个SPS和7个INV基因(GenBank No:MK386943-53)。生物信息学分析表明,菊芋SUS、SPS和INV的氨基酸序列与其他物种具有较高的相似性,均属于亲水性蛋白。在25、30°C处理10、15、20 d的菊芋幼苗叶片中,这三种基因家族成员呈现不同的表达模式;除可溶性总糖含量减少外,果糖、蔗糖、蔗果三糖等含量没有发生明显变化。表明高温下幼苗蔗糖代谢关键酶基因发生了响应,蔗糖代谢处于平衡状态,显示了菊芋对高温的良好耐受性。  相似文献   

11.
大多数植物的库器官都是以蔗糖的形式接受碳源和能源,蔗糖进入库代谢需要转化酶和蔗糖合成酶降解成为葡萄糖和果糖,而糖又调节植物代谢过程中许多酶的基因表达,因此蔗糖降解酶是植物生长发育中起关键作用的酶.综述了近年来蔗糖合成酶和转化酶的作用及它们基因表达和调节的研究进展.  相似文献   

12.
Sugarcane cell cultures were obtained from callus formed on explants derived from young expanding leaves of two early maturing sugarcane varieties viz “CoJ83” and “CoJ86”. The cell cultures were varied with different arginine concentrations in the culture medium. For each cultivar, sucrose content with 20 μM arginine in the culture medium decreased from 3 to 5 days and then increased to 10 days after subculturing. Higher concentration of arginine in the culture medium (60 μM) decreased the sucrose content at different days after subculturing and thus significantly stimulated sucrose mobilization. The activity of sucrose synthase and sucrose phosphate synthase reached maximum while the activity of acid and neutral invertase was minimal in the culture medium with 20 μM arginine. Thus arginine at low concentration (20 μM) enables the cells to accumulate the higher level of sucrose. The optimum level of amino acids can be utilized to regulate the in vivo activity of sucrose synthase, sucrose phosphate synthase and invertase to achieve maximum sucrose accumulation in sugarcane storage tissue.  相似文献   

13.
14.
Green plants including representatives of angiosperms, gymnosperms, ferns, mosses, liverworts and green algae were shown to contain a specific sucrose phosphatase, the last enzyme in the pathway of sucrose synthesis. The enzyme from all species required Mg2+ for activity and it was partially inhibited by sucrose. It was not detected in a red alga, brown algae, or mushroom species which contain little or no sucrose.  相似文献   

15.
Sucrose Metabolism in Lupinus albus L. Under Salt Stress   总被引:3,自引:0,他引:3  
Salt stress (50 and 150 mM NaCl) effects on sucrose metabolism was determined in Lupinus albus L. Sucrose synthase (SS) activity increased under salt stress and sucrose phosphate synthase activity decreased. Acid invertase activity was higher at 50 mM NaCl and decreased to control levels at 150 mM NaCl. Alkaline invertase activity increased with the salt stress. Glucose content decreased with salt stress, sucrose content was almost three times higher in plants treated with 150 mM NaCl and fructose content did not change significantly. The most significant response of lupin plants to NaCl excess is the increase of sucrose content in leaves, which is partially due to SS activity increase under salinity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Asymmetrically-labelled sucrose was absorbed intact by excised roots of tomato, grown in sucrose. Glucose-grown roots possessed sucrose synthetase and sucrose phosphate synthetase activity.  相似文献   

17.
Recent reports have suggested that sucrose phosphate synthase (EC 2.4.1.14), a key enzyme in sucrose biosynthesis in photosynthetic “source” tissues, may also be important in some sucrose accumulating “sink” tissues. These experiments were conducted to determine if sucrose phosphate synthase is involved in sucrose accumulation in fruits of several species. Peach (Prunus persica NCT 516) and strawberry (Fragaria x ananassa cv. Chandler) fruits were harvested directly from the plant at various stages of fruit development. Kiwi (Actinidia chinensis), papaya (Carica papaya), pineapple (Ananas comosus) and mango (Mangifera indica) were sampled in postharvest storage over a period of several days. Carbohydrate concentrations and activities of sucrose phosphate synthase, sucrose synthase (EC 2.4.1.13), and acid and neutral invertases (EC 3.2.1.26) were measured. All fruits contained significant activities of sucrose phosphate synthase. Moreover, in fruits from all species except pineapple and papaya, there was an increase in sucrose phosphate synthase activity associated with the accumulation of sucrose in situ. The increase in sucrose concentration in peaches was also associated with an increase in sucrose synthase activity and, in strawberries, with increased activity of both sucrose synthase and neutral invertase. The hexose pools in all fruits were comprised of equimolar concentrations of fructose and glucose, except in the mango. In mango, the fructose to glucose ratio increased from 2 to 41 during ripening as sucrose concentration more than doubled. The results of this study indicate that activities of the sucrose metabolizing enzymes, including sucrose phosphate synthase, within the fruit itself, are important in determining the soluble sugar content of fruits of many species. This appears to be true for fruits which sweeten from a starch reserve and in fruits from sorbitol translocating species, raffinose saccharide translocating species, and sucrose translocating species.  相似文献   

18.
【目的】为了解稻纵卷叶螟Cnaphalocrocis medinalis和白背飞虱Sogatella furcifera的复合危害对水稻产量相关因子和相关酶类的影响。【方法】本文设定两种害虫的先后危害顺序,并通过调整两者开始危害的时间,研究了受害后水稻在灌浆期根、茎和叶片中淀粉和蔗糖含量的变化以及蔗糖合成酶(Sucrose synthase,SS)和蔗糖磷酸合成酶(Sucrose phosphate synthase,SPS)活性的变化。【结果】随着接虫量的增加,水稻不同组织内各生理指标与对照相比均显著下降。随着间隔天数的增加,先接白背飞虱为害要重于先接稻纵卷叶螟。比如叶片中蔗糖含量在先接稻纵卷叶螟的处理中随着间隔天数的增加显著增加,相应的SPS活性显著增加,间隔24 d的处理显著高于间隔6 d和12 d;而先接白背飞虱的处理中蔗糖含量与SPS活性均显著降低,间隔24 d的处理显著低于间隔6 d和12 d的处理。茎部淀粉含量在先接稻纵卷叶螟的处理中随着间隔天数的增加逐渐增加,SS活性显著增加,而先接白背飞虱的处理中淀粉含量和SS活性均显著降低;叶片中淀粉含量均随着间隔天数的增加逐渐降低,而相应的SS活性在先接稻纵卷叶螟的处理中显著增加,在先接白背飞虱的处理中相反。另外,接虫量和间隔天数间有显著的交互作用。【结论】本研究对指导水稻生产中的"两迁害虫"防治具有潜在应用价值。  相似文献   

19.
Aims:  To verify the taxonomic affiliation of bacterium Butyrivibrio fibrisolvens strain A from our collection and to characterize its enzyme(s) responsible for digestion of sucrose.
Methods and Results:  Comparison of the 16S rRNA gene of the bacterium with GenBank showed over 99% sequence identity to the species Pseudobutyrivibrio ruminis . Molecular filtration, native electrophoresis on polyacrylamide gel, zymography and thin layer chromatography were used to identify and characterize the relevant enzyme. An intracellular sucrose phosphorylase with an approximate molecular mass of 52 kDa exhibiting maximum activity at pH 6·0 and temperature 45°C was identified. The enzyme was of inducible character and catalysed the reversible conversion of sucrose to fructose and glucose-1-P. The reaction required inorganic phosphate. The K m for glucose-1-P formation and fructose release were 3·88 × 10−3 and 5·56 × 10−3 mol l−1 sucrose, respectively – while the V max of the reactions were −0·579 and 0·9  μ mol mg protein−1 min−1. The enzyme also released free glucose from glucose phosphate.
Conclusion:  Pseudobutyrivibrio ruminis strain A utilized sucrose by phosphorolytic cleavage.
Significance and Impact of the Study:  Bacterium P. ruminis strain A probably participates in the transfer of energy from dietetary sucrose to the host animal.  相似文献   

20.
Male and female medflies, Ceratitis capitata, were maintained for up to 8 days after emergence on 2% (58 mM), 8% (234 mM), or 16% (468 mM) sucrose solutions. Sucrose intake was recorded daily and whole-body analyses of lipid and glycogen were made at regular intervals.Greater volumes of fluid were imbibed by all flies on more dilute solutions. However, the amount of sucrose taken up over time was greatest for males on the 16% diet. Female intake was equal on the 8 and 16% diets.Males lost body triacylglycerol at a rate proportional to the dilution of the diet. Females on 8 and 16% sucrose lost no triacylglycerol throughout the 8-day period. Males and females, starved for 2 days after emergence lost 80% of their triacylglycerol and did not resume triacylglycerol synthesis when offered a diet rich in sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号