首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim To determine the environmental factors associated with bryophyte diversity in remnants in a fragmented, agricultural landscape. Location Eighty‐two remnants of tussock grassland, eucalypt woodland and eucalypt forest in the subhumid Midlands region of Tasmania, Australia. Methods Remnants were surveyed for bryophytes and predictor variables, such as vascular plant cover, climate, and topography. Management histories for each remnant were compiled using both site observation and landowner surveys. Bryophyte cover, richness, and composition were related to the independent variables using simple correlation and general linear models. Results We found weak relationships between the dependent variables and the fragmentation variables (remnant area, remnant perimeter to area ratio, distance to nearest remnant, distance to nearest larger remnant, and remnant age). Instead, climatic variables were important in predicting bryophytes, in particular those affecting humidity (minimum temperature of the coldest month, precipitation). Despite extensive sheep grazing in this landscape, grazing was not correlated with bryophyte diversity. Bryophyte diversity was not explained by vascular plant richness and was only weakly explained by composition, but was predicted by the cover of vascular plants. There was greater bryophyte cover and richness and different composition where the cover of native vascular plants was lower. Main conclusions The implications of our results are that all remnants, regardless of area, age and isolation, appear to be valuable for bryophyte conservation in this highly altered landscape. Our results also suggest that the cover of the vascular plant community, rather than its diversity, holds promise as a guide to bryophyte diversity. Bryophyte composition was similar between sites and a focus on the most species‐rich sites may be the best conservation strategy in this ecosystem.  相似文献   

2.
E. Aude  R. Ejrnæs 《Oikos》2005,109(2):323-330
A three-year multi-factorial microcosm experiment simulating fertilisation, defoliation and the composition of vascular vegetation in a dry grassland succession was used to test four hypotheses concerning the establishment and survival of bryophytes in grassland vegetation. H1: bryophyte cover may be used to predict bryophyte species richness. H2: bryophyte richness is suppressed at high nutrient levels and promoted by defoliation of vascular plants. H3: species richness of bryophytes is influenced by the species composition of the vascular vegetation. H4: bryophyte species richness is negatively correlated with vascular plant biomass.
The relationship between bryophyte richness and bryophyte cover was found to follow the classical species-area richness curve. Bryophyte species richness responded positively to defoliation and negatively to fertilisation. The species composition of vascular vegetation had no significant effect on bryophyte richness. Bryophyte species richness was lower at high vascular plant biomass and vascular plant dry weight above 400 g m−2 appeared fatal to bryophytes. At high nutrient levels, defoliation increased bryophyte richness, but defoliation did not fully compensate for the negative effect of fertilisation. The study reinforces the concern for short lived shuttle bryophytes in the agricultural landscape.  相似文献   

3.
This study aimed to (i) investigate the congruence among the species composition and diversity of bryophytes and vascular plants in forests; (ii) test if site prioritization for conservation aims by the maximization of the pooled number of vascular plant species is effective to maximize the pooled number of bryophyte species. The study was performed in six forests in Tuscany, Italy. Four-hundred and twenty vascular plant species (61 of which were woody) and 128 bryophyte species were recorded in 109 plots. Despite the good predictive value of the compositional patterns of both woody plants and total vascular with respect to the compositional pattern of bryophytes, the species richness of the latter was only marginally related to the species richness of the former two. Bryophyte rare species were not spatially related to rare plant species and neither coincided with the sites of highest plant species richness. The species accumulation curves of bryophytes behaved differently with respect to those of woody plants or total vascular plants. Reserve selection analysis based on the maximization of the pooled species richness of either woody plants or total vascular plants were not effective in maximizing the pooled species richness of bryophytes. This study indicates that species diversity of vascular plants is not likely to be a good indicator of the bryophyte species diversity in Mediterranean forests.  相似文献   

4.
We compare species richness of bryophytes and vascular plants in Estonian moist forests and mires. The material was collected from two wetland nature reserves. Bryophyte and vascular plant species were recorded in 338 homogeneous stands of approximately 1 ha in nine forest and two mire types. Regional species pools for bryophytes and vascular plants were significantly correlated. The correlations between the species richnesses of bryophytes and vascular plants per stand were positive in all community types. The relative richnesses (local richness divided by the regional species pool size) were similar for bryophyte species and for vascular plant species. This shows that on larger scales, conservation of the communities rich in species of one taxonomic plant group, maintains also the species richness of the other. The minimum number of stands needed for the maintenance of the regional species pool of typical species for the every community type was calculated using the species richness accumulation curves. Less stands are needed to maintain the bryophyte species pools (300–5300 for bryophytes and 400–35 000 for vascular plants).  相似文献   

5.
We studied the relative importance of local habitat conditions and landscape structure for species richness of vascular plants, bryophytes and lichens in dry grasslands on the Baltic island of Öland (Sweden). In addition, we tested whether relationships between species richness and vegetation cover indicate that competition within and between the studied taxonomic groups is important. We recorded species numbers of vascular plants, bryophytes and lichens in 4 m2 plots (n=452), distributed over dry grassland patches differing in size and degree of isolation. Structural and environmental data were collected for each plot. We tested effects of local environmental conditions, landscape structure and vegetation cover on species richness using generalized linear mixed models. Different environmental variables explained species richness of vascular plants, bryophytes and lichens. Environmental effects, particularly soil pH, were more important than landscape structure. Interaction effects of soil pH with other environmental variables were significant in vascular plants. Plot heterogeneity enhanced species richness. Size and degree of isolation of dry grassland patches significantly affected bryophyte and lichen species richness, but not that of vascular plants. We observed negative relationships between bryophyte and lichen species richness and the cover of vascular plants. To conclude, effects of single environmental variables on species richness depend both on the taxonomic group and on the combination of environmental factors on a whole. Dispersal limitation in bryophytes and lichens confined to dry grasslands may be more common than is often assumed. Our study further suggests that competition between vascular plants and cryptogams is rather asymmetric.  相似文献   

6.
The mechanisms that ultimately regulate the diversity of microbial eukaryotic communities in bryophyte ecosystems remain a contentious topic in microbial ecology. Although there is robust consensus that abiotic factors, such as water chemistry of the bryophyte and pH, explain a significant proportion of protist and microcrustacean diversity, there is no systematic assessment of the role of bryophyte habitat complexity on such prominent microbial groups. Water-holding capacity is correlated with bryophyte morphology and canopy structure. Similarly, canopy structure explains biodiversity dynamics of the macrobiota suggesting that canopy structure may also be a potential parameter for understanding microbial diversity. Canopy roughness of the dominant bryophyte species within the Bahoruco Cloud Forest, Cachote, Dominican Republic, concomitant with their associated diversity of testate amoebae and microcrustaceans was estimated to determine whether canopy structure could be added to the list of factors explaining microbial biodiversity in bryophytes. We hypothesized that smooth (with high moisture content) canopies will have higher species richness, density, and biomass of testate amoebae and higher richness and density of microcrustaceans than rough (desiccation-prone) canopies. For testate amoebae, we found 83 morphospecies with relative low abundances. Species richness and density differed among bryophytes with different bryophyte canopy structures and based on non-metric multidimensional scaling, canopy roughness explained 25% of the variation in species composition although not as predicted. Acroporium pungens (low roughness, LR) had the lowest species richness (2 ± 0.61 SD per gram dry weight bryophyte), and density (2.1 ± 0.61 SD individual per gram of dry weight bryophyte); whereas Thuidium urceolatum (high roughness) had the highest richness (24 ± 10.82 SD) and density (94 ± 64.30 SD). The fact that the bryophyte with the highest roughness had the highest levels of diversity for testate amoebae suggests that moisture levels at the level of the bryophyte canopy may not represent a biodiversity driver in a cloud forest with high relative humidity; however, high roughness could generate a dynamic and fluctuating moisture environment with concomitant alternating microbial communities. A total of 26 microcrustacean morphospecies were found across 11 bryophytes; however, no bryophyte canopy effect was detected on their richness and density. Microcrustacean mean density was low ranging from less than one individual per 50 cm2 of bryophyte in Leucobryum (LR) to a maximum of 6 ± 3.37 SD individuals/50 cm2 in Monoclea (LR). This lack of pattern suggests that possible explanatory variables may be related to larger scale processes than those examined in this study.  相似文献   

7.
Non‐vascular plant distribution patterns were examined in three microhabitats along an altitudinal gradient on a recent lava flow of the Piton de la Fournaise volcano (La Réunion, Mascarene archipelago). The uniform nature of the lava flow provides an excellent system to study the relationship between altitude and species diversity and distribution, and at the same time avoiding confusing multiple effects of substrate and vegetation heterogeneity. Non‐vascular plants were surveyed with quadrats within an altitudinal range from 250 m to 850 m a.s.l. Fine‐scale variations in bryophyte communities between three ecological microhabitats (the ground and on the rachises of two fern species) were investigated. Three specific questions were addressed: (1) What is the species diversity of bryophyte communities on a 19‐year‐old lava flow? (2) How does altitude influence the diversity and distribution of bryophytes on a lava flow? (3) Does microhabitat variation control bryophyte diversity? In our study, bryophyte diversity increased with altitude. Unexpectedly, species richness was very high; 70 species of bryophytes were recorded including nine new records for the island. Diversity was also controlled by ecological microhabitats. Bryophyte species were structured into six categories according to altitude and microhabitat preferences. Results suggested that the high diversity of these cryptic organisms on this lava flow is fostered in part by their host substrate and their adaptative strategies on new substrates. On a broader scale, it was concluded that lava flows as primary mineral environments are important to conserve, as they support a high diversity of pioneer organisms that constitute the early stages of the development of La Réunion's remnant lowland rainforest.  相似文献   

8.
Abstract We describe the regional species richness, variation in species richness and species turnover of bryophytes and lichens from 36 sites in lowland forests of southeastern Australia. The analyses subdivided the two major taxa into their constituent sub-groups: mosses, liverworts, and crustose, fruticose and foliose lichens. They also explored correlations between selected environmental variables and patterns of diversity. On a regional scale, there were 77 species of bryophytes and 69 species of lichens, giving a total of approximately one-third of the total number of vascular plant species in the region. Mean species richness was higher for lichens than bryophytes. Also, the two taxa were negatively correlated because lichens favoured dry sites and bryophytes favoured moist ones. Species turnover was greater for bryophytes than lichens, largely due to the distribution of liverwort species. Foliose lichens showed higher levels of turnover than crustose lichens. Multiple regression and canonical correspondence analysis showed that both taxa and all sub-groups responded to the same three variables: vascular plant cover, time since last fire and topographic position. Other variables, including time since logging and intensity of logging, explained little variation in bryophyte or lichen diversity. The data suggest that the strategies for the conservation of bryophyte and lichen biodiversity will be different, to reflect the different patterns of species richness and species turnover.  相似文献   

9.
Abstract

Both local and regional predictors play a role in determining plant community structure and composition. Climate, soil features as well as different local history and management affect forest understorey and tree species composition, but to date their specific role is relatively unknown. Few studies have addressed the importance of these predictors, especially in the Mediterranean area, where environmental conditions and human impacts have generated heterogeneous forest communities. In this study, the relationships between environmental variables and species richness of different groups of vascular plants (vascular species, woody species and open habitat species) and bryophytes were investigated in Tuscan forests. A total of 37 environmental variables were used by generalised linear model fitting in order to find parsimonious sub-sets of environmental factors (predictors) that are able to explain species diversity patterns at the local scale. Moreover, the role of regional and local variable groups on species richness of the considered plant groups was estimated by using the variance partitioning approach. We found that local variables, such as forest management and structure, explained more variance than regional variables for total species richness, open habitat species richness and bryophyte species richness. On the other hand, regional variables (such as elevation) played a central role for woody species richness.  相似文献   

10.
The environmental factors correlating with community structure of vegetation on talus slopes of the 785 km long Niagara Escarpment, southern Ontario, Canada, were studied using canonical correspondence and regression analysis. The bryophytes and higher vascular plants were analysed separately to see if their responses were similar or different. Both vascular plants and bryophytes responded similarly to the environmental variables that were measured. For both vegetation components, location from north to south explained most of the variance. When species richness was plotted against location for the complete vegetation and for the two components separately, the results showed that vascular plant species richness decreased with increasing latitude, while bryophyte richness increased. The magnitude of both of these trends was slight but consistent with the hypothesis that available environmental energy governs a significant amount of the variance in species richness. Since separate components of the talus vegetation were shown to respond differently to the same environmental variable, groups of taxa should not be excluded from community level studies without a consideration of the possible consequences of this bias.  相似文献   

11.
Herbivory can affect plant community composition and diversity by removing biomass and reducing light competition. Herbivory may particularly benefit low growing species such as bryophytes, which are frequently limited by light competition. Gastropods are important herbivores of seed plants and cryptogams, furthermore, they can disperse propagules such as seeds and spores via endozoochory. However, whether gastropod herbivory can reduce the dominance of vascular plants and thereby promote the germination and establishment of endozoochorously dispersed bryophyte spores has never been tested experimentally. Moreover, it is unclear whether these possible interacting effects can influence bryophyte species richness. Here, we tested for endozoochorous spore dispersal by slugs, in combination with sowing of vascular plants, in a fully factorial common garden experiment. Enclosures contained either slugs previously fed with bryophyte sporophytes, control slugs, or no slugs. After 21 days the bryophyte cover was on average 2.8 times higher (3.9% versus 1.4%) and after eight months the bryophyte species richness 2.6 times higher (5.8 versus 2.2) in enclosures containing slugs previously fed with bryophyte sporophytes than in the other treatments. Furthermore, after eight months high vascular plant cover reduced bryophyte diversity. On average enclosures without seed sowing harboured 1.6 times more bryophyte species than the ones with seed sowing (4.2 versus 2.6), indicating competitive effects of vascular plants on bryophytes. Our findings suggest that slugs are important dispersal vectors for bryophytes and that they can increase bryophyte populations and maintain bryophyte diversity by reducing the dominance of vascular plants.  相似文献   

12.
浙江西天目山苔藓植物物种多样性的研究   总被引:8,自引:0,他引:8  
对浙江西天目山不同海拔苔藓植物进行调查,从种类组成、相似性、α多样性和β多样性等方面进行了苔藓植物物种多样性分析.结果表明,海拔1 100 m处落叶阔叶林下的苔藓植物种类最多,物种丰富度最高;它与海拔1 300 m落叶矮林下苔藓植物的相似性系数也最高;而海拔800~1 100 m之间的β多样性最大,这一区段苔藓植物的物种变化速率最快,种类更替最明显.西天目山海拔1 100 m处苔藓植物物种多样性最高,是该山体苔藓植物多样性保护的关键区段.  相似文献   

13.
Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific bryophyte effects on vascular plant generative recruitment depend on the following underlying mechanisms: allelopathy, mechanical obstruction, soil moisture and temperature control. We sowed 10 vascular plant species into monospecific mats of six chemically and structurally diverse bryophytes, and examined 1-yr seedling recruitment. Allelopathic effects were also assessed in a laboratory phyto-assay. Although all bryophytes suppressed vascular plant regeneration, there were significant differences between the bryophyte species. The lack of interactions indicated the absence of species-specific adaptations of vascular plants for recruitment in bryophyte mats. Differences between bryophyte species were best explained by alterations in temperature regime under bryophyte mats, mostly by reduced temperature amplitudes during germination. The temperature regime under bryophyte mats was well predicted by species-specific bryophyte cushion thickness. The fitness of established seedlings was not affected by the presence of bryophytes. Our results suggest that climatically or anthropogenically driven changes in the species' composition of bryophyte communities have knock-on effects on vascular plant populations via generative reproduction.  相似文献   

14.
Based on a stratified random sample of 93 vegetation plots and coincident measurements of ecological conditions in mountain forests of the Bavarian Alps, the degree to which species composition and Ellenberg indicator values derived thereof were related to measured environmental variables was assessed for vascular understorey plants and epigeic bryophytes. According to Mantel tests vascular composition contained ca. 30% more ecological information than bryophyte composition. When expressed as average Ellenberg or Düll values, vascular plant-based values reflected 60% more of measured variables than bryophyte-based values. The differences remained after rarefaction of the vascular matrix to the gamma diversity of bryophytes, showing that indication is not a function of indicator richness. Analysing vascular plants and bryophytes combined yielded very similar, or even slightly less stringent relationships with the environment than using vascular plants only.Bivariate relationships of indicator values with corresponding ecological measurements confirmed the specific potential of the values to estimate ecological factors from both plant groups, but vascular plants performed better for all factors. Bryophyte indication was particularly poor for light, temperature and base saturation. Bryophyte-based indicator values did not significantly predict the residuals of measured ecological variables against vascular plant-based Ellenberg values.For the study region, it is concluded that indicator values of vascular forest understorey should be used without consideration of Düll's indicator values for epigeic bryopyhtes. There appears to be potential to improve bioindication by recalibrating indicator values of epigeic bryophytes based on ecological measurements and vascular plant indicator values.  相似文献   

15.
Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.  相似文献   

16.
The effects of soil disturbance caused by the uprooting of a single or a few canopy trees on species richness and composition of vascular plant species and bryophytes were examined in a temperate beech forest (Fagus sylvatica) in northern Germany. We recorded the vegetation in 57 pairs of disturbed and adjacent undisturbed plots and established a chronosequence of mound ages to study the effect of time since microsite formation on plant species richness and composition. We found significant differences in plant species richness and composition between disturbed and adjacent undisturbed plots. Species richness of both vascular plants and bryophytes was higher in the disturbed than in the undisturbed plots, but these differences were more pronounced for bryophytes. We suggest that three main factors are responsible for this differential response. The availability of microsites on the forest floor that are suitable for the recruitment of bryophytes is lower than for vascular plants. Establishment of bryophytes in disturbed microsites is favoured by a greater abundance of propagules in the close vicinity and in the soil of the disturbed microsites, as well as by a greater variety of regeneration strategies in bryophytes than in vascular plants. Time since mound formation was a major factor determining plant species richness and composition. A significant decrease in the mean number of species was found from young mounds to intermediate and old mounds. However, differences were observed between vascular plants and bryophytes in the course of changes through time in species richness and composition. A large number of exclusive and infrequent vascular plant species was observed on young mounds, among them several disturbance specialists. We suggest that the establishment of many vascular plant species was infrequent and short-lived due to unfavourable light conditions and a low abundance of propagules. By contrast, the development of a litter layer was the main reason for the decreased mean number of bryophytes on old mounds. Our study supports the view that groups of species differing in important life history traits exhibit different responses to soil disturbance.  相似文献   

17.
Despite many studies showing biodiversity responses to warming, the generality of such responses across taxonomic groups remains unclear. Very few studies have tested for evidence of bryophyte community responses to warming, even though bryophytes are major contributors to diversity and functioning in many ecosystems. Here, we report an empirical study comparing long‐term change in bryophyte and vascular plant communities in two sites with contrasting long‐term warming trends, using “legacy” botanical records as a baseline for comparison with contemporary resurveys. We hypothesized that ecological changes would be greater in sites with a stronger warming trend and that vascular plant communities, with narrower climatic niches, would be more sensitive than bryophyte communities to climate warming. For each taxonomic group in each site, we quantified the magnitude of changes in species'' distributions along the elevation gradient, species richness, and community composition. We found contrasted temporal changes in bryophyte vs. vascular plant communities, which only partially supported the warming hypothesis. In the area with a stronger warming trend, we found a significant increase in local diversity and dissimilarity (β‐diversity) for vascular plants, but not for bryophytes. Presence–absence data did not provide sufficient power to detect elevational shifts in species distributions. The patterns observed for bryophytes are in accordance with recent literature showing that local diversity can remain unchanged despite strong changes in composition. Regardless of whether one taxon is systematically more or less sensitive to environmental change than another, our results suggest that vascular plants cannot be used as a surrogate for bryophytes in terms of predicting the nature and magnitude of responses to warming. Thus, to assess overall biodiversity responses to global change, abundance data from different taxonomic groups and different community properties need to be synthesized.  相似文献   

18.
The disturbance regime in mixed-wood forests of eastern Canada is characterized by both natural disturbances including wildfires and insect outbreaks as well as forestry. The understanding of how understorey plant assemblages respond to different disturbances is mostly limited to short-term wildfire-logging comparisons of vascular plants. Here, we compare patterns of species richness and composition of four bryophyte guilds in young forests (approx. 40 years old) regenerating after clear-cut logging, wildfire, and spruce budworm outbreak. In addition, young forests were compared with mature spruce-fir dominated stands (approx. 90 years old). Although similar in overall species richness at the scale of 1,000 m2 all young forest types were compositionally distinct with fewer species than mature forests. Stands developed after spruce budworm outbreaks had the highest canopy cover values and the highest surface area of coarse woody debris. These stands had similar numbers of woody debris species as mature forests and were closest to mature forests in species composition. Wildfire-disturbed sites were dominated by deciduous trees and a high number of treebase species. Finally, young managed forest had the highest number of forest floor bryophytes at the scale of 100 m2 among the three young forest types, but was compositionally far from mature forests in their woody debris flora. In conclusion, young forests regenerating after natural disturbances are distinctly different from young forests regenerated after clear-cutting and if natural disturbances are eliminated certain species (e.g., epixylic and treebase species) might become more restricted to older stands in the landscape.  相似文献   

19.
We investigated the effect of woody species’ encroachment on plant diversity changes with regard to vascular plants and bryophytes in traditional olive groves of the Maremma Regional Park (Tuscany, Italy) and assessed cross-taxon correlation between these two taxa. We classified the olive groves into four land use types, representing different successional stages. To describe the evenness of species distribution within a community, we plotted rank-abundance diagrams for each taxon and each land use type. The relationship between the number and cover of vascular plants, therophytes, bryophytes, colonists and phanerophytes in each plot was examined using linear regression. The effects of land use type on vascular plant and bryophyte richness and assemblages were assessed by permutational uni- and multivariate analysis of variance. The congruence in species composition between the two taxa was evaluated using Procrustes analysis. The number of vascular plants, bryophytes and therophytes decreased linearly with increased phanerophyte species cover. The number of species belonging to Thero-Brachypodietea progressively decreased throughout succession. Rank-abundance diagrams and multivariate analysis showed differences between the land use types, which were statistically significant for vascular plants between the traditional olive groves and the other land use types, and for bryophytes between the traditional olive groves and woodlands. PROTEST analysis and NMDS graphs showed a correlation between vascular plant and bryophyte communities. The results suggested that conservation measures are needed in the study area in order to ensure both the maintenance of traditional olive groves of conservation interest and high levels of environmental heterogeneity.  相似文献   

20.
In grassland communities vascular plants and bryophytes form two distinct layers. In order to understand the factors responsible for plant community structure, more information about interactions between these plant groups is needed. Often negative correlations between vascular plant and bryophyte covers have been reported, suggesting competition. Here we tested experimentally whether different grassland vascular plant species (Trifolium pratense, Festuca pratensis, Prunella vulgaris) had different influences on the cover of two bryophyte species (Rhytidiadelphus squarrosus, Brachythecium rutabulum). In a two-year garden pot experiment one bryophyte species and one vascular plant species were planted per pot. Bryophytes were planted at a constant density, vascular plants in four densities. The cover of both bryophyte species increased with increasing vascular plant cover, showing the facilitative effect of vascular plants through creating better microclimate, e.g., optimising temperature. Bryophyte responses to vascular plant species were species-specific. Festuca had significantly positive effects on both bryophyte species in the second year, and Trifolium on Brachythecium in both years, whereas Prunella had no significant effect on bryophytes. The facilitative effect of vascular plants was stronger at the second experimental year. In summary, the biotic effects between bryophytes and grassland vascular plants are species-specific and positive interactions are prevailing at low vascular plant densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号