首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Saccharomyces cerevisiae was inoculated into a yeast nitrogen base with either glycerol or glucose as carbon source. Cell proliferation was followed by colony counts on agar medium. Cells in the glycerol-supplemented medium divided less than once in 10 days. When glucose, 6-deoxy-glucose or protoporphyrin IX was added, the cells had doubling times of about 24 h and increased in number to about 0.5 × 106 cells ml−1 Addition of either of the protein kinase C activators oleoyl-acetylglycerol or phorbol-12-myristate-13-acetate did not activate cell proliferation in the glycerol medium. However, when (i) glucose was combined with either protoporphyrin IX or chlorophyllin, or (ii) either protoporphyrin IX or chlorophyllin was combined with either of the protein kinase C activators, the cells had doubling times of about 12 h. Hence, (i) glucose can act as both a carbon source and a signalling molecule for proliferation, and (ii) two systems are involved in activating cell proliferation in S. cerevisiae : one operating through a protein kinase C system and another through a guanylate cyclase system.  相似文献   

2.
The structures of calcium-activated neutral protease (CANP) and its endogenous inhibitor elucidated recently have revealed novel features with respect to their structure-function relationship and enzyme activity regulation. The protease is regarded as a proenzyme which can be activated at the cell membrane in the presence of Ca2+ and phospholipid, and presumably regulates the functions of proteins, especially membrane-associated proteins, by limited proteolysis. Protein kinase C is hydrolysed and activated by CANP at the cell membrane to a cofactor-independent form. These results are reviewed and the possible involvement of CANP in signal transduction is discussed.  相似文献   

3.
We investigated the membrane trafficking of AQP3 induced by epinephrine in Caco-2 cells to clarify the digestive absorption of glycerol permeated by AQP3. Epinephrine was found to promote within 60 min the translocation of AQP3 from the cytoplasmic fraction to the plasma membrane. This increased trafficking of AQP3 was suppressed by phospholipase C and protein kinase C (PKC) inhibitors and a phorbol ester accelerated the trafficking of AQP3 to the membrane fraction. In contrast, adenylyl cyclase (AC) and protein kinase A (PKA) inhibitors did not have any effect on the increased in trafficking of AQP3 by epinephrine and an AC activator did not affect the trafficking of AQP3. Phosphorylation of a threonine (514) residue in PKC was detected upon the treatment with epinephrine and the temporal transitional pattern of this phosphorylation paralleled that of the increased trafficking of AQP3. These results suggest that PKC modulates the trafficking of AQP3.  相似文献   

4.
The regulation of protein phosphatase 2A (PP2A) and protein threonine phosphorylation by H(2)O(2) was determined in Caco-2 cell monolayer. Incubation with H(2)O(2) (20 microM) resulted in threonine phosphorylation of a cluster of proteins at the molecular mass range of 170-250 kDa. PKC activity and plasma membrane localization of several isoforms of PKC were not affected by H(2)O(2). However, H(2)O(2) reduced 80-85% of okadaic acid-sensitive protein phosphatase activity. Immunocomplex protein phosphatase assay demonstrated that H(2)O(2) reduced the activity of PP2A, but not that of PP2C or PP1. Oxidized glutathione inhibited PP2A activity in plasma membranes prepared from Caco-2 cells and the phosphatase activity of an isolated PP2A. PP2A activity was also inhibited by N-ethylmaleimide, iodoacetamide, and p-chloromercuribenzoate. Inhibition of PP2A by oxidized glutathione was reversed by reduced glutathione. Glutathione also restored the PP2A activity in plasma membranes isolated from H(2)O(2)-treated Caco-2 cell monolayer. These results indicate that PP2A activity can be regulated by glutathionylation, and that H(2)O(2) inhibits PP2A in Caco-2 cells, which may involve glutathionylation of PP2A.  相似文献   

5.
The cellular prion protein (PrPC) is a GPI-anchored cell-surface protein. A small subset of PrPC molecules, however, can be integrated into the ER-membrane via a transmembrane domain (TM), which also harbors the most highly conserved regions of PrPC, termed the hydrophobic core (HC). A mutation in HC is associated with prion disease resulting in an enhanced formation of a transmembrane form (CtmPrP), which has thus been postulated to be a neurotoxic molecule besides PrPSc. To elucidate a possible physiological function of the transmembrane domain, we created a set of mutants carrying microdeletions of 2-8 aminoacids within HC between position 114 and 121. Here, we show that these mutations display reduced propensity for transmembrane topology. In addition, the mutants exhibited alterations in the formation of the C1 proteolytic fragment, which is generated by α-cleavage during normal PrPC metabolism, indicating that HC might function as recognition site for the protease(s) responsible for PrPC α-cleavage. Interestingly, the mutant G113V, corresponding to a hereditary form of prion disease in humans, displayed increased CtmPrP topology and decreased α-cleavage in our in vitro assay. In conclusion, HC represents an essential determinant for transmembrane PrP topology, whereas the high evolutionary conservation of this region is rather based upon preservation of PrPC α-cleavage, thus highlighting the biological importance of this cleavage.  相似文献   

6.
Classical protein kinase C (PKC) enzymes are known to be important factors in cell physiology both in terms of health and disease. They are activated by triggering signals that induce their translocation to membranes. The consensus view is that several secondary messengers are involved in this activation, such as cytosolic Ca2+ and diacylglycerol. Cytosolic Ca2+ bridges the C2 domain to anionic phospholipids as phosphatidylserine in the membrane, and diacylglycerol binds to the C1 domain. Both diacylglycerol and the increase in Ca2+ concentration are assumed to arise from the extracellular signal that triggers the hydrolysis of phosphatidylinositol-4,5-bisphosphate. However, results obtained during the last decade indicate that this phosphoinositide itself is also responsible for modulating classical PKC activity and its localization in the plasma membrane.  相似文献   

7.
We isolated from Saccharomyces cerevisiae two mutants, esc1-1 and ESC3-1, in which genes FBP1, ICL1 or GDH2 were partially derepressed during growth in glucose or galactose. The isolation was done starting with a triple mutant pyc1 pyc2 mth1 unable to grow in glucose-ammonium medium and selecting for mutants able to grow in the non-permissive medium. HXT1 and HXT2 which encode glucose transporters were expressed at high glucose concentrations in both esc1-1 and ESC3-1 mutants, while derepression of invertase at low glucose concentrations was impaired. REG1, cloned as a suppressor of ESC3-1, was not allelic to ESC3-1. Two-hybrid analysis showed an increased interaction of the protein kinase Snf1 with Snf4 in the ESC3-1 mutant; this was not due to mutations in SNF1 or SNF4. ESC3-1 did not bypass the requirement of Snf1 for derepression. We hypothesize that ESC3-1 either facilitates activation of Snf1 or interferes with its glucose-dependent inactivation.  相似文献   

8.
The cellular prion protein (PrP(c)) is highly conserved in mammals and expressed widely in different tissues but its physiological role remains elusive. Recently, the human PrP(c) was shown to possess nucleic acid binding and chaperoning properties similar to human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein, a key viral factor in virus structure and replication. These findings prompted us to determine if PrP(c) could influence HIV-1 replication. We used the human 293T cell line as a model system, since only a very low level of PrP(c) accumulates in these cells. Expression of PrP at a high level resulted in a specific decrease of HIV-1 Env and Vpr expression. Despite similar levels of intracellular Gag, virus production was reduced by eightfold and infectivity by three- to fourfold in the presence of PrP(c). A PrP(c) mutant lacking the glycosylphosphatidylinositol (GPI) anchor peptide did not impair HIV-1 production, suggesting that PrP(c) trafficking is critical for this inhibitory effect. Coexpressing HIV-1 and PrP(c) in these cells also caused a fraction of PrP(c) to become partially proteinase K-resistant (PrP(res)), further illustrating the interactions between HIV-1 and PrP(c).  相似文献   

9.
Fasciculation and elongation protein zeta-1 (FEZ1) is a mammalian orthologue of the Caenorhabditis elegans UNC-76 protein involved in the axonal outgrowth and fasciculation and promotes neurite extension of PC12 cells through interaction with protein kinase C zeta (PKCzeta). The gene coding for FEZ2, a homologue of FEZ1, has also been reported in rat and human. In this study, we compared mRNA expression of FEZ1 and FEZ2 in adult rat tissues and mouse embryos by Northern blot and in situ hybridization analyses. In contrast to FEZ1 whose mRNA is expressed almost exclusively in rat brain and temporarily around the neurogenesis stage of mouse embryos, the message for FEZ2 is detected weakly in most tissues and abundantly throughout the mouse embryonic stages. Similar to FEZ1, FEZ2 interacted with PKCzeta and induced neurite extension of PC12 cells when coexpressed with a constitutively active mutant of PKCzeta. These results suggest that FEZ2 plays an important role in the morphological changes of various cells by associating with PKCzeta in a tissue-non-specific manner.  相似文献   

10.
As reports on G protein-coupled receptor signal transduction mechanisms continue to emphasize potential differences in signaling due to relative receptor levels and cell type specificities, the need to study endogenously expressed receptors in appropriate model systems becomes increasingly important. Here we examine signal transduction mechanisms mediated by endogenous kappa-opioid receptors in C6 glioma cells, an astrocytic model system. We find that the kappa-opioid receptor-selective agonist U69,593 stimulates phospholipase C activity, extracellular signal-regulated kinase 1/2 phosphorylation, PYK2 phosphorylation, and DNA synthesis. U69,593-stimulated extracellular signal-regulated kinase 1/2 phosphorylation is shown to be upstream of DNA synthesis as inhibition of signaling components such as pertussis toxin-sensitive G proteins, L-type Ca2+ channels, phospholipase C, intracellular Ca2+ release, protein kinase C, and mitogen-activated protein or extracellular signal-regulated kinase kinase blocks both of these downstream events. In addition, by overexpressing dominant-negative or sequestering mutants, we provide evidence that extracellular signal-regulated kinase 1/2 phosphorylation is Ras-dependent and transduced by Gbetagamma subunits. In summary, we have delineated major features of the mechanism of the mitogenic action of an agonist of the endogenous kappa-opioid receptor in C6 glioma cells.  相似文献   

11.
While the prion protein (PrP) is clearly involved in neuropathology, its physiological roles remain elusive. Here, we demonstrate PrP functions in cell-substrate interaction in Drosophila S2, N2a and HeLa cells. PrP promotes cell spreading and/or filopodia formation when overexpressed, and lamellipodia when downregulated. Moreover, PrP normally accumulates in focal adhesions (FAs), and its downregulation leads to reduced FA numbers, increased FA length, along with Src and focal adhesion kinase (FAK) activation. Furthermore, its overexpression elicits the formation of novel FA-like structures, which require intact reggie/flotillin microdomains. Altogether, PrP modulates process formation and FA dynamics, possibly via signal transduction involving FAK and Src.  相似文献   

12.
The purpose of this report was to determine the effect of prion protein (PrP) gene disruption on T lymphocyte function. Previous studies have suggested that normal cellular prion protein (PrP(c)) binds to copper and Cu(2+) is essential for interleukin-2 (IL-2) mRNA synthesis. In this study, IL-2 mRNA levels in a copper-deficient condition were investigated using T lymphocytes from prion protein gene-deficient (PrP(0/0)) and wild-type mice. Results showed that Cu(2+) deficiency had no effect on PrP(c) expression in Con A-activated splenocytes. However, a delay in IL-2 gene expression was observed in PrP(0/0) mouse T lymphocyte cultures using Con A and Cu(2+)-chelator. These results suggest that PrP(c) expression may play an important role in rapid Cu(2+) transfer in T lymphocytes. The rapid transfer of Cu(2+) in murine T lymphocytes could be one of the normal functions of PrP(c).  相似文献   

13.
Aquaporins are water channel proteins that facilitate the movement of water and other small solutes across biological membranes. Plants usually have large aquaporin families, providing them with many ways to regulate the water transport. Some aquaporins are regulated post-translationally by phosphorylation. We have previously shown that the water channel activity of SoPIP2;1, an aquaporin in the plasma membrane of spinach leaves, was enhanced by phosphorylation at Ser115 and Ser274. These two serine residues are highly conserved in all plasma membrane aquaporins of the PIP2 subgroup. In this study we have purified and characterized two protein kinases phosphorylating Ser115 and Ser274 in SoPIP2;1. By anion exchange chromatography, the Ser115 kinase was purified from the soluble protein fraction isolated from spinach leaves. The Ca2+-dependent Ser274 kinase was purified by peptide affinity chromatography using plasma membranes isolated from spinach leaves. When characterized, the Ser115 kinase was Mg2+-dependent, Ca2+-independent and had a pH-optimum at 6.5. In accordance with previous studies using the oocyte expression system, site-directed mutagenesis and kinase and phosphatase inhibitors, the phosphorylation of Ser274, but not of Ser115, was increased in the presence of phosphatase inhibitors while kinase inhibitors decreased the phosphorylation of both Ser274 and Ser115. The molecular weight of the Ser274 kinase was approximately 50 kDa. The identification and characterization of these two protein kinases is an important step towards elucidating the signal transduction pathway for gating of the aquaporin SoPIP2;1.  相似文献   

14.
The sensing of extracellular Ca2+ concentration ([Ca2+]o) and modulation of cellular processes associated with acute or sustained changes in [Ca2+]o are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca2+]o signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca2+]o activated PKC-α and PKC-ε in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca2+]o required influx of Ca2+through Ni2+-sensitive Ca2+channels and phosphatidylinositol-dependent phospholipase C-β activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-α or -ε with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca2+]o. Activation of ERK1/2 by high [Ca2+]o was not necessary for the [Ca2+]o-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca2+]o signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.  相似文献   

15.
The initiation and maintenance of reproductive function in mammals is critically dependent on the pulsatile secretion of gonadotropin-releasing hormone (GnRH). This peptide drives the pulsatile release of FSH and LH from the pituitary pars distalis via signaling pathways that are activated by the type I GnRH receptor (GnRH-R). Recently, a microarray analysis study reported that a number of genes, including mPer1, are induced by GnRH in immortalized gonadotrope cells. In view of these data, we have begun to analyze in detail the signaling pathways mediating the action of GnRH on mPer1 expression in these cells. Using quantitative real-time polymprose cho read (PCR), we could confirm that exposure of immortalized gonadotropes (LβT2 cells) to the GnRH analog, buserelin, markedly induces mPer1 (but not mPer2) expression. Consistent with GnRH receptor signaling via the protein kinase (PK)-C pathway, exposure of the cells to phorbol 12,13-dibutyrate rapidly elevates both mPer1 and LHβ subunit mRNA levels, while pharmacological inhibition of PKC prevents the mPer1 and LHβ response to buserelin. As GnRH is known to regulate gonadotropin synthesis via activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathways, we then examined the involvement of this pathway in regulating mPer1 expression in gonadotropes. Our data reveal that GnRH-induced mPer1 expression is blocked following acute exposure to a MAPK kinase inhibitor. Although the involvement of this signaling mechanism in the regulation of mPer1 is known in neurons, e.g., in the suprachiasmatic nuclei, the induction of mPer1 in gonadotropes represents a novel mechanism of GnRH signaling, whose functional significance is still under investigation.  相似文献   

16.
The MARCKS (myristylated alanine-rich C-kinase substrate) protein is an abundant calmodulin-binding protein that is a major and specific endogenous substrate of protein kinase C (PKC). Stimulation of cells with phorbol esters or other activators of PKC has been shown previously to result in rapid phosphorylation of MARCKS proteins and redistribution of these myristylated C-kinase substrates from membrane to cytosol. Here we show that NIH3T3 murine fibroblasts transformed by p21-HA-C-RAS or pp60-V-SRC oncoproteins have markedly reduced levels of p68-MARCKS and that most of the remaining MARCKS protein is found in the cytosol. 3T3 cells containing a nontransforming oncoprotein p26-BCL2, in contrast, exhibited normal levels and distribution of p68-MARCKS. When taken together with recent evidence that MARCKS proteins are involved in regulating organization of the membrane cytoskeleton, our findings suggest that oncoprotein-mediated alterations in MARCKS protein levels and subcellular distribution may contribute to the development or maintenance of the transformed phenotpe.  相似文献   

17.
Protein F1 (GAP-43, B-50, neuromodulin, P-57), a neural tissue-specific phosphoprotein enriched in the growth cones of elongating neurites, is suggested to be involved in synaptic plasticity, neuronal development, and neurotransmitter release. In this study, a 21 amino acid polypeptide (AKPKES* ARQDEGKEDPEADQE) that corresponds to the C-terminus sequence of protein F1 (from position 204–224) was synthesized and used to produce anti-protein F1 antibodies. Immunoblot analysis has demonstrated that the prepared antibodies recognized intact protein F1. Protein F1 and the synthesized F1 peptide were phosphorylated in vitro by PKC. Furthermore, phosphorylated protein F1 was immunoprecipitated by anti-F1 peptide antibodies demonstrating that these antibodies recognized both native, non-phosphorylated and phosphorylated protein. The anti-protein F1 antibodies also stained the plasma membranes of cell bodies and neurities of mouse neuronal cultures obtained from 14-day old spinal embryonic tissue. By contrast, no glial cells were stained. These data suggest that serine 209 at the C-terminus of protein F1 may be a substrate for PKC phosphorylation in vivo. In addition, antibodies raised against F1 peptide revealed protein F1 immunoreactivity that outlined all neurites of cultured mouse spinal neurons.Abbreviations used IgG immunoglobulin G - KLH keyhole limpet haemocyanin - OAG L--1-oleoyl-2-acetoyl-sn-3-glycerol - PAGE polyacrylamide gel electrophoresis - PBS phosphate-buffered saline - PKC protein kinase C - SDS sodium dodecyl sulfate - TFA trifluoroacetic acid  相似文献   

18.
The acid hydrolysis product of saxitoxin is shown to be decarbamoylsaxitoxin by spectral characterization and its reconversion to saxitoxin by carbamoylation. Natural and resynthesized saxitoxin are identical in chromatographic and spectral properties and in their potencies in blocking the sodium channel in squid giant axon. The hydrolysis product, decarbamoylsaxitoxin, exhibits 20% of the potency of saxitoxin in the squid axon system. These results confirm the structure of the hydrolysis product and its biological activity relative to saxitoxin.  相似文献   

19.
Ubiquitination, proteasome, caveolae and endosomes have been implicated in controlling protein kinase Cα (PKCα) down-regulation. However, the molecular mechanism remained obscure. Here we show that endosomes and proteasome cooperate in phorbol ester 12-O-tetradecanoyl phorbol acetate (TPA)-induced down-regulation of PKCα. We show that following TPA treatment and translocation to the plasma membrane, PKCα undergoes multimonoubiquitination prior to its degradation by the proteasome. However, to reach the proteasome, PKCα must travel through the endocytic system from early to late endosomes. This route requires functional endosomes, whereby endosomal alkalinization, or ablation, abrogates completely PKCα degradation maintaining the enzyme at the plasma membrane. This route also depends on synaptotagmin (Syt) II and the Rab7 GTPase, whereby Syt II knock-down or expression of the GDP-locked Rab7 inactive mutant prevents PKCα degradation. We further show that proteasome plays a dual role, where an active proteasome is required for deubiquitination of PKCα, a step crucial to prevent PKCα targeting to the endocytic recycling compartment. Finally, we show that the association with rafts-localized cell surface proteins that internalize in a clathrin-independent fashion is necessary to allow the trafficking of PKCα from the plasma membrane to the proteasome, its ultimate degradation station.  相似文献   

20.
10-Me-aplog-1 is a simplified analog of the tumor-promoting compound debromoaplysiatoxin (DAT) and a unique protein kinase C (PKC) activator with limited tumor-promoting and pro-inflammatory activities. 10-Me-aplog-1 inhibits the growth of several cancer cell lines, but the inhibitory mechanism involving PKC isozymes remains unclear. We quantified the amount of PKC isozymes in nine human cancer cell lines that differ in 10-Me-aplog-1 sensitivity. PKCα and δ were the predominant isozymes expressed in all cell lines, but there was no significant correlation between expression levels and anti-proliferative activity. Knocking down PKCα, and/or PKCδ in the three aplog-sensitive cell lines indicated their involvement in the anti-proliferative and pro-apoptotic activities of 10-Me-aplog-1. This finding suggests that PKCα and/or PKCδ activation could be effective for treating certain cancers. Since the mechanism underlying 10-Me-aplog-1's anti-proliferative activities resembles that of DAT, 10-Me-aplog-1 may be regarded as a special key derived from pleiotropic DAT as a bunch of keys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号