首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用网络药理学与分子对接从细胞因子风暴角度分析连花清瘟胶囊入血成分干预新型冠状病毒肺炎(COV-ID-19)的可能作用机制.通过文献挖掘确定连花清瘟胶囊入血成分,借助TCMSP和BATMAN-TCM数据库检索连花清瘟胶囊人血成分相关作用靶点;利用GeneCards、OMIM和Drugbank数据库筛选COVID-19与...  相似文献   

2.
基于中医药整合药理学、网络药理学及分子对接技术探寻祖卡木颗粒的活性成分防治新型冠状病毒肺炎(COVID-19),探讨其治疗COVID-19的可能的机制.祖卡木颗粒的10味中药借助于开放的4大数据库进行检索,并通过ADMET水平筛选得到48个候选成分.将候选成分通过预处理,作为做分子对接的配体.2019-nCoV-Mpr...  相似文献   

3.
本文旨在通过网络药理学和分子对接的方法,解析参附注射液治疗COVID-19合并AKI的作用机制,为中医药治疗COVID-19合并AKI提供理论依据指导,通过TCMSP数据库获得参附注射液中红参、附子的化学成分并结合文献补充;通过Swiss Target Prediction数据库预测活性化学成分的作用靶点;通过GeneCards数据库筛选COVID-19及合并症AKI的靶点;通过DAVID数据库分别进行GO和KEGG富集分析;运用Cytoscape 3.8.0软件构建中药-成分-靶点-通路网络;AutoDock 4.2.6和PyMol进行核心成分与Mpro、ACE2的分子对接以及可视化处理。结果挖掘出参附注射液中139种活性成分,参附注射液治疗COVID-19及AKI共同靶点共64个,关键靶点涉及TNF、IL6、MAPK3、CASP3等,涉及低氧诱导因子-1信号通路、肿瘤坏死因子信号通路、PI3K-Akt信号通路、Toll样受体信号通路、细胞凋亡等67条。分子对接结果显示人参皂苷-Rc与ACE2、人参皂苷Rh2与Mpro有较好的结合能力。本研究揭示了参附注射液通过多成分、多靶点、多通路...  相似文献   

4.
本文旨在探讨化湿败毒方治疗COVID-19的现代药理学研究并运用网络药理学方法预测化湿败毒方治疗COVID-19的作用机制。通过查阅文献及临床报道,总结化湿败毒方治疗COVID-19现代药理学研究。通过TCMSP数据库获取化湿败毒方的主要活性化合物及对应靶点并利用GeneCards数据库获取COVID-19的疾病靶点。使用STRING数据库构建蛋白互作网络并对核心靶点进行GO富集和KEGG通路分析,利用Cytoscape3.7.0软件构建化合物-靶标网络。最后把主要核心化合物与SARS-CoV-2 3CL水解酶及ACE2受体进行分子对接。现代药理学研究表明,化湿败毒方有抗炎、抗病毒和调节免疫作用。结果筛选到261个中药靶点,251个疾病相关靶点,药物和疾病靶点取交集得到关键靶点49个。GO富集包括1 547条生物过程、29条细胞组分以及86项分子功能,KEGG通路富集得156条通路与COVID-19相关(P0.05),涉及卡波西氏肉瘤相关疱疹病毒感染、人巨细胞病毒感染、甲型流感、IL-17通路、TNF通路、AGE-RAGE通路等相关通路。预测出主要的核心化合物有槲皮素、木犀草素、山奈酚、汉黄芩素、柚皮素、β-谷甾醇、黄芩素等,在整个网络中发挥着关键作用。分子对接结果显示槲皮素、木犀草素、山奈酚与3CL水解酶和ACE2均有较好的结合。本研究较为全面揭示了化湿败毒方治疗COVID-19"多成分、多靶点、多通路"的特点,为深入探讨化湿败毒方治疗COVID-19的作用机制提供参考依据。  相似文献   

5.
本研究运用网络药理学方法研究清肺排毒汤治疗新冠肺炎(COVID-19)的多成分、多靶点、多通路的作用机制,旨在为相关基础研究及临床应用提供依据。首先利用TCMSP数据库根据OB≥30%及DL≥0.18为筛选条件,筛选清肺排毒汤中活性成分302个及相关作用靶点148个,通过GeneCards数据库筛选COVID-19相关作用靶点362个,经Venn分析得到交集靶点23个。接着利用Cytoscape软件的CentiScaPe插件分析得到显著有效化合物10个和关键靶点5个,进一步构建网络拓扑图。通过对显著有效化合物和关键靶点的分子对接,结果显示,分子间的结合能力和相互作用能力较强。最后通过R软件的ClusterProfiler包对关键靶点做GO富集和KEGG通路富集分析,显著有效化合物中槲皮素、木犀草素、柚皮素、山奈酚、黄芩素等具有不同程度的止咳、祛痰、消炎、抗病毒等功效,关键靶点主要被富集在IL-17、Tuberculosis、TNF、MAPK、Th17、Pertussis等144个相关信号通路上,涉及磷酸酶结合、MAP激酶活性、细胞因子受体结合等28个生物学功能调控机体代谢、免疫调节、炎症反应等生理过程,根据以上结果,认为清肺排毒汤的活性成分对COVID-19的治疗具有多靶点、多途径的调节作用。  相似文献   

6.
本文旨在通过网络药理学和分子对接探索荆芥-防风药对治疗冠状病毒肺炎的潜在药效物质和作用靶点。首先,通过检索TCMSP、ETCM、BATMAN-TCM数据库收集荆芥-防风中活性成分及其作用靶点,并在GeneCards、OMIM、NCBI Gene数据库收集冠状病毒肺炎相关靶点。然后,两者取交集运用STRING数据库分析关键靶点间蛋白相互作用,并利用DAVID数据库进行生物功能和通路分析。最后,利用Autodock软件对潜在药效物质和关键靶点进行分子对接。本研究共收集到28个活性成分、56个关键靶点。GO功能富集收集到176个生物过程(biological process)、47个分子功能(cell compound)、36个细胞组分(molecular function)(P0.05)。KEGG通路富集共收集到99条通路(P0.05)。分子对接结果显示,潜在药效物质与关键靶点及血管紧张素转化酶II、COVID-19 main protease对接结果能量低于-5 kcal/mol。本文揭示了荆芥-防风药对治疗冠状病毒肺炎可能的潜在药效物质和作用靶点,为荆芥-防风的开发和后续研究打下了基础。  相似文献   

7.
许琼  秦慧 《微生物与感染》2020,15(6):413-420
2019冠状病毒病(coronavirus disease 2019,COVID-19)是由严重急性呼吸综合征冠状病毒2 (severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)导致的感染性疾病。SARS-CoV-2感染人体后除作用于肺部的SARS-CoV-2功能受体外,还可以作用于心脏、消化道、肝脏、肾脏、中枢系统的SARS-CoV-2功能受体,引起肺外脏器的损伤,诱发多器官功能衰竭,增加COVID-19的病死率。但目前对SARS-CoV-2引起肺外各脏器损伤的具体作用机制还不是很清楚,需要更多临床和实验室数据支持。通过检索COVID-19相关的文献,对SARS-CoV-2导致的肺外系统影响及其可能作用机制作一综述。  相似文献   

8.
在新型冠状病毒肺炎(COVID-19)疫情暴发的大背景之下,为进一步了解和明确COVID-19当前研究的全球现状和热点,本研究基于Web of Science数据库对该主题进行检索,对自疫情暴发到2020年4月30日新型冠状病毒(SARS-CoV-2)领域的SCI文献进行计量学分析,探讨SARS-CoV-2的研究重点以及研究现状.本研究通过对SARS-CoV-2相关文献的信息获取、处理、分析,应用文献计量学方法对该研究领域进行研究态势分析.统计分析数据及可视化数据分析结果表明,以"COVID-19 or Novel coronavirus pneumonia"为主题词,搜索到文献共计1 523篇;在现阶段处于研究的初期,在该领域中国发文量排名第一位;伦敦大学、哈佛大学和华中科技大学是世界范围内发文量前三名的机构;并对高频关键词进行类群整理明确研究热点为COVID-19、SARS以及public health(公共卫生).研究发现,中国学者在"COVID-19"领域的研究取得了快速发展,在文章的影响力、发文量上都属于世界前沿水平.  相似文献   

9.
基于网络药理学探求当归四逆汤作用于腰椎间盘突出症的作用机理.系统检索中药系统药理学技术平台(TCMSP)、中药潜在靶点数据库(TCM-PTD)获取当归四逆汤药物的有效活性成分45个,作用靶点132个,并将得到的靶点与通用蛋白数据库(Uniprot)中载入的基因名称简称进行匹配.通过检索人类基因数据库(GeneCards...  相似文献   

10.
本研究采用网络药理学和分子对接方法探讨金钱草治疗痛风的作用机制.通过检索TCMSP、TCMID、ETCM、Sym-Map、BATMAN-TCM数据库,并在PubMed、中国知网、万方数据库进行文献挖掘,获取金钱草活性成分;通过GeneCards、TTD、OMIM和DisGeNET数据库收集痛风靶点,并将活性成分靶点与疾...  相似文献   

11.
BackgroundThe Coronavirus disease 2019 pneumonia broke out in 2019 (COVID-19) and spread rapidly, which causes serious harm to the health of people and a huge economic burden around the world.PurposeIn this study, the network pharmacology, molecular docking and surface plasmon resonance technology (SPR) were used to explore the potential compounds and interaction mechanism in the Toujie Quwen Granules (TQG) for the treatment of coronavirus pneumonia 2019.Study designThe chemical constituents and compound targets of Lonicerae Japonicae Flos, Pseudostellariae Radix, Artemisia Annua L, Peucedani Radix, Forsythiae Fructus, Scutellariae Radix, Hedysarum Multijugum Maxim, Isatidis Folium, Radix Bupleuri, Fritiliariae Irrhosae Bulbus, Cicadae Periostracum, Poria Cocos Wolf, Pseudobulbus Cremastrae Seu Pleiones, Mume Fructus, Figwort Root and Fritillariae Thunbrgii Bulbus in TQG were searched. The target name was translated to gene name using the UniProt database and then the Chinese medicine-compound-target network was constructed. Protein-protein interaction network (PPI), Gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the core targets were performed in the Metascape to predict its mechanism. The top 34 compounds in the Chinese medicine-compound-target network were docked with SARS-CoV-2 3CL enzyme and SARS-­CoV­-2 RNA-dependent RNA polymerase (RdRp) and then the 13 compounds with lowest affinity score were docked with angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 Spike protein and interleukin 6 to explore its interaction mechanism. Lastly, SPR experiments were done using the quercetin, astragaloside IV, rutin and isoquercitrin, which were screened from the Chinese medicine-compound-target network and molecular docking.ResultsThe Chinese medicine-compound-target network includes 16 medicinal materials, 111 compounds and 298 targets, in which the degree of PTGS2, TNF and IL­6 is higher compared with other targets and which are the disease target exactly. The result of GO function enrichment analysis included the response to the molecule of bacterial origin, positive regulation of cell death, apoptotic signaling pathway, cytokine-mediated signaling pathway, cytokine receptor binding and so on. KEGG pathway analysis enrichment revealed two pathways: signaling pathway­ IL-17 and signaling pathway­ TNF. The result of molecular docking showed that the affinity score of compounds including quercetin, isoquercitrin, astragaloside IV and rutin is higher than other compounds. In addition, the SPR experiments revealed that the quercetin and isoquercitrin were combined with SARS-CoV-2 Spike protein rather than Angiotensin-converting enzyme 2, while astragaloside IV and rutin were combined with ACE2 rather than SARS-CoV-2 Spike protein.ConclusionTQG may have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation related targets and pathways, in the way of multi-component, multi-target and multi-pathway.  相似文献   

12.
Guizhi granules mainly treat colds and improve overall health. They are widely used in clinical practice, but their protective effect and anti-inflammatory mechanism against influenza are unclear. In this study, the therapeutic effect of Guizhi granules on influenza was verified in vitro. The active compounds, targets, and cellular pathways of Guizhi granules against influenza were predicted using network pharmacology. The protein-protein interaction and component-target networks identified 5 core targets (JUN, TNF-α, RELA, AKT1, and MAPK1) and components (dihydrocapsaicin, kumatakenin, calycosin, licochalcone A, and berberine). GO and KEGG enrichment analyses revealed the anti-influenza pathways of Guizhi granules as antiviral and anti-inflammatory pathways. Molecular docking further verified that the core targets and components have good or strong binding activity. Therefore, the active ingredients, targets, and molecular mechanisms of Guizhi granules involved in influenza treatment were elucidated.  相似文献   

13.
An outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been recognized as a global health concern. Since, no specific antiviral drug is proven effective for treatment against COVID-19, identification of new therapeutics is an urgent need. In this study, flavonoid compounds were analyzed for its inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. Virtual docking was performed for screening of flavonoid compounds retrieved from PubChem against the main protease of SARS-CoV-2 using COVID-19 docking server. The cut off of dock score was set to >?9 kcal/mol and screened compounds were individually docked against main protease, RNA-dependent RNA polymerase, and spike proteins using AutoDock 4.1 software. Finally, lead flavonoid compounds were subjected to ADMET analysis. A total of 458 flavonoid compounds were virtually screened against main protease target and 36 compounds were selected based on the interaction energy value >?9 kcal/mol. Furthermore, these compounds were individually docked against protein targets and top 10 lead compounds were identified. Among the lead compounds, agathisflavone showed highest binding energy value of ?8.4 kcal/mol against main protease, Albireodelphin showed highest dock score of ?9.8 kcal/mol and ?11.2 kcal/mol against RdRp, and spike proteins, respectively. Based on the high dock score and ADMET properties, top 5 lead molecules such as Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate were identified as potent inhibitors against main protease, RdRp, and spike protein targets of SARS-CoV-2. These all compounds are having non-carcinogenic and non-mutagenic properties. This study finding suggests that the screened compounds include Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate could be the potent inhibitors of SARS-CoV-2 targets.  相似文献   

14.
15.
目的 从中药筛选具有潜在抑制严重急性呼吸综合征冠状病毒2 (SARS-CoV-2) 活性的成分,进一步从原子水平揭 示其抑制SARS-CoV-2 表面刺突蛋白(S 蛋白) 受体结合域(RBD) 与血管紧张素转化酶2 (ACE2) 结合的内在机制。 方法 检索新型冠状病毒(简称“新冠肺炎”) 治疗中药处方,构建“新冠肺炎中药候选活性成分数据库”。用具有ACE2 抑制活性的小分子化合物构建HipHop药效团模型,并对“新冠肺炎中药候选活性成分数据库”中活性成分筛选。采用分子 对接和分子动力学模拟方法研究候选活性成分与ACE2 的结合方式及其对SARS-CoV-2 S 蛋白与ACE2 识别的影响。 结果 本文通过中药处方挖掘和分子动力学模拟,从143 个新冠肺炎治疗中药处方中筛选出10 种可与SARS-CoV-2 S 蛋白/ 人源ACE2 识别位点结合的中药成分。其中,枇杷叶主要活性成分23-trans-p-coumaryhormentic acid 与ACE2 具有最高的亲和 力,且23-trans-p-coumaryhormentic acid 的结合可有效阻断SARS-CoV-2 S蛋白与宿主细胞ACE2 的结合。结论 本文通过虚 拟筛选发现了SARS-CoV-2 潜在抑制剂分子23-trans-p-coumaryhormentic acid,同时从原子水平预测了其抑制SARS-CoV-2 S 蛋白与ACE2 结合的内在机制,这将为SARS-CoV-2 特异性抗病毒药物的研发提供理论依据。  相似文献   

16.
COVID-19 (coronavirus disease-2019) is a contagious illness that has been declared a global epidemic by the World Health Organization (WHO). The coronavirus causes diseases ranging in severity from the common cold to severe respiratory diseases and death. Coronavirus primarily affects blood pressure by attaching to the angiotensin converting enzyme 2 (ACE 2) receptor. This virus has an impact on multiple organ systems, including the central nervous system, immune system, cardiovascular system, peripheral nervous system, gastrointestinal tract, endocrine system, urinary system, skin, and pregnancy. For the prevention of COVID-19, various vaccines such as viral-like particle vaccines, entire inactivated virus vaccines, viral vector vaccines, live attenuated virus vaccines, subunit vaccines, RNA vaccines, and DNA vaccines are now available. Some of the COVID-19 vaccines are reported to cause a variety of adverse effects that range from mild to severe in nature. SARS-CoV-2 replication is controlled by the RNA-Dependent RNA-Polymerase enzyme (RdRp). The availability of FDA-approved anti-RdRp drugs (Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir) as potent drugs against SARS-CoV-2 that tightly bind to its RdRp may aid in the treatment of patients and reduce the risk of the mysterious new form of COVID-19 viral infection. RdRp inhibitors, such as remdesivir (an anti-Ebola virus experimental drug) and favipiravir (an anti-influenza drug), inhibit RdRp and thus slow the progression of COVID-19 and associated clinical symptoms, as well as significantly shorten recovery time. Molnupiravir, an orally active RdRp inhibitor and noval broad spectrum antiviral agent, is an isopropyl pro-drug of EIDD-1931 for emergency use. Galidesivir's in vitro and in vivo activities are limited to RNA of human public health concern. Top seeds for antiviral treatments with high potential to combat the SARS-CoV-2 strain include guanosine derivatives (IDX-184), setrobuvir, and YAK. The goal of this review is to compile scattered information on available COVID-19 vaccines and other treatments for protecting the human body from their harmful effects and to provide options for making better choices in a timely manner.  相似文献   

17.
The coronavirus disease 2019 (COVID-19), which emerged in December 2019, continues to be a serious health concern worldwide. There is an urgent need to develop effective drugs and vaccines to control the spread of this disease. In the current study, the main phytochemical compounds of Nigella sativa were screened for their binding affinity for the active site of the RNA-dependent RNA polymerase (RdRp) enzyme of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The binding affinity was investigated using molecular docking methods, and the interaction of phytochemicals with the RdRp active site was analyzed and visualized using suitable software. Out of the nine phytochemicals of N. sativa screened in this study, a significant docking score was observed for four compounds, namely α-hederin, dithymoquinone, nigellicine, and nigellidine. Based on the findings of our study, we report that α-hederin, which was found to possess the lowest binding energy (–8.6 kcal/mol) and hence the best binding affinity, is the best inhibitor of RdRp of SARS-CoV-2, among all the compounds screened here. Our results prove that the top four potential phytochemical molecules of N. sativa, especially α-hederin, could be considered for ongoing drug development strategies against SARS-CoV-2. However, further in vitro and in vivo testing are required to confirm the findings of this study.  相似文献   

18.
Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2.  相似文献   

19.
Objective: ´Three formulas and three medicines,’ namely, Jinhua Qinggan Granule, Lianhua Qingwen Capsule, Xuebijing Injection, Qingfei Paidu Decoction, HuaShi BaiDu Formula, and XuanFei BaiDu Granule, were proven to be effective for coronavirus disease 2019 (COVID-19) treatment. The present study aimed to identify the active chemical constituents of this traditional Chinese medicine (TCM) and investigate their mechanisms through interleukin-6 (IL-6) integrating network pharmacological approaches.Methods: We collected the compounds from all herbal ingredients of the previously mentioned TCM, but those that could down-regulate IL-6 were screened through the network pharmacology approach. Then, we modeled molecular docking to evaluate the binding affinity between compounds and IL-6. Furthermore, we analyzed the biological processes and pathways of compounds. Finally, we screened out the core genes of compounds through the construction of the protein–protein interaction network and the excavation of gene clusters of compounds.Results: The network pharmacology research showed that TCM could decrease IL-6 using several compounds, such as quercetin, ursolic acid, luteolin, and rutin. Molecular docking results showed that the molecular binding affinity with IL-6 of all compounds except γ-aminobutyric acid was < −5.0 kJ/mol, indicating the potential of numerous active compounds in TCM to directly interact with IL-6, leading to an anti-inflammation effect. Finally, Cytoscape 3.7.2 was used to topologize the biological processes and pathways of compounds, revealing potential mechanisms for COVID-19 treatment.Conclusion: These results indicated the positive effect of TCM on the prevention and rehabilitation of COVID-19 in at-risk people. Quercetin, ursolic acid, luteolin, and rutin could inhibit COVID-19 by down-regulating IL-6.  相似文献   

20.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), is a new coronavirus strain that was first reported in December 2019 in Wuhan, China. A specific treatment for COVID-19 has yet to be identified. Potential therapeutic targets include SARS-CoV-2 main protease (Mpro) and the SARS-CoV-2 spike-ACE2 interaction. Molecular docking, molecular dynamics (MD), solvent screening for the extraction of the specified compounds, and prediction of the drug properties of certain molecules were the methods used in this study to investigate compounds from the medicinal plant Myristica fragrans, which is one of twelve herbs in Prasachandaeng remedy (PSD). ArgusLab, AutoDock Vina, and AutoDock were used to perform docking tasks. The examined ligands were compared with panduratin A as a standard (Kanjanasirirat et al., 2020), which is a promising medicinal plant molecule for the treatment of COVID-19. Molecular docking revealed that malabaricones B and C and licarins A, B and C bound to SARS-CoV-2/ACE2 and SARS-CoV-2 Mpro with low binding energies compared to that of the standard ligand. Furthermore, appropriate solvent usage is important. Acetone was selected by COSMOquick software for compound extraction in this investigation because it can extract large amounts of all five of the abovementioned M. fragrans compounds. Furthermore, the drug-like properties of these compounds were studied utilizing the Lipinski, Veber, and Ghose criteria. The results revealed that these M. fragrans compounds have potential as effective medicines to combat the COVID-19 pandemic. However, to assess the therapeutic potential of these ligands, additional research is needed, which will use our findings as a foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号