首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
刘伟丰  陶勇 《生物工程学报》2013,29(8):1123-1132
合成生物学以创建人工生命体系为目的.实践中人们希望人工生命体系具有更强的生产能力、转化能力、环境适应与监测能力,从而获得更优质的生产方式.生命体系的优化涉及到多层次的调控网络,而根本上还是对细胞中蛋白质的含量、定位、活性的控制.在蛋白质表达水平上进行控制是合成生物学元件设计、模块组装以及适配性研究最核心的手段.类似于工厂中的成本计算,合成生物学创建的人工生命体系(人工细胞工厂)以蛋白质预算为依据.优化蛋白质预算的研究策略已经成功应用于合成生物学研究实践中.  相似文献   

2.
介绍一种长期保存细菌的合成保养液   总被引:1,自引:0,他引:1  
合成保养液具有细菌生存所需要的各种营养物质 ,并能提供新陈代谢中的能量 ,使细菌保存 1 0年之久 ,是一种长期保存细菌良好的培养基。  相似文献   

3.
由于全球人口持续增长,人类对于蛋白质的需求量的不断上涨,对全球的粮食供应造成巨大压力。细菌作为生产单细胞蛋白(SCP)的潜在来源,可通过自养和异养的代谢途径生产单细胞蛋白,为解决世界粮食供应不足、改善人类食品结构提供新方法。此外,利用Haber-Bosch工艺及电化学的方法从废水中回收单细胞蛋白最终实现资源的可持续利用。该文对单细胞蛋白的来源、细菌生产单细胞蛋白的机理及应用等方面进行了综述,并对细菌生产单细胞蛋白用于食品行业的发展前景进行展望。  相似文献   

4.
细菌中常见的蛋白翻译后修饰   总被引:1,自引:0,他引:1  
蛋白质的翻译后修饰在生物体生命活动中发挥着重要作用,大部分蛋白质都会经历翻译后修饰。对这些修饰的了解和掌握非常重要,因为这些修饰可能会改变蛋白质的物理及化学性质,如折叠、构象、稳定性及活性,从而改变蛋白的功能。此外,修饰基团本身也可能具有某些功能。因此,分析研究蛋白质翻译后修饰具有重要意义。细菌中常见的翻译后修饰过程有糖基化、磷酸化和乙酰化,我们简要综述了这几种修饰过程。  相似文献   

5.
任何一个蛋白质合成系统的最终目标都是表达所需要的蛋白质(目的蛋白质)而不产生其他的细胞蛋白质。目前,只有两种方法可以成功的表达目的蛋白质:体外无细胞蛋白质合成系统和体内单蛋白生产(SPP)系统。综述现今不同的单蛋白生产系统,讨论他们的应用、优点和缺点。  相似文献   

6.
趋磁细菌可在环境中吸收大量铁并在细胞内合成纳米级磁性颗粒—磁小体。比较几种趋磁细菌基因组特征,针对磁小体岛及与磁小体合成相关基因功能特点等方面,综述了当前磁小体合成机制的研究进展。  相似文献   

7.
线粒体是哺乳动物细胞内重要细胞器,不仅通过氧化磷酸化产生ATP为细胞提供能量,也参与调节钙离子稳态、活性氧(reactive oxygen species,ROS)的产生、细胞应激反应和细胞死亡等过程,其功能障碍不仅导致多种人类疾病的发生,而且也能降低动物卵母细胞质量和早期胚胎发育能力.大量证据表明,线粒体的功能依赖于...  相似文献   

8.
一种制备植病细菌菌体蛋白的简易方法   总被引:1,自引:1,他引:0  
本文报道了一种简易制备植物病原细菌菌体蛋白的改良丙酮法。细菌细胞经丙酮处理,真空干燥或冷冻干燥后,用冰冷蒸馏水提取细胞蛋白。经等电聚焦电泳分析,结果表明,比常规方法(如溶菌酶法、超声波法等)有简单、快速、重复性好、影响因素(如核酸类物质)少和成本低等优点。  相似文献   

9.
表观遗传和蛋白质翻译后修饰在细菌耐药中的作用   总被引:1,自引:0,他引:1  
日益严重的细菌耐药性有可能使人类重回前抗生素时代。细菌的耐药机理多样,深入研究细菌的耐药性形成机理有助于开发控制耐药细菌感染的新措施。表观遗传和蛋白质翻译后修饰在细胞代谢、信号转导、蛋白质降解、调控DNA复制、应激反应等方面都具有重要作用。近年来研究表明表观遗传和蛋白质翻译后修饰在细菌耐药中也扮演着重要的角色。本文总结了DNA甲基化、调控型RNAs等表观遗传因素和磷酸化、琥珀酰基化等蛋白质翻译后修饰因素在细菌耐药性中的调控作用,以期为抗生素靶标选择和抗生素开发设计提供新思路。  相似文献   

10.
重组蛋白经聚乙二醇(PEG)化修饰在优化药物代谢动力学和药效学性质的同时,使药物的结构和质量属性变得更为复杂,修饰后的重组蛋白在结构、理化性质和生物学活性等方面与未修饰的重组蛋白相比有较大差异,对其质量控制的研究必须结合品种自身独特的质量属性。现从蛋白质药物质量控制的角度,对PEG化蛋白质药物的重要质量属性的质控难点和相应检测方法进行综述,以期对工艺开发和生产上的实际工作有所帮助。  相似文献   

11.
12.
13.
The main challenge of ensiling is conserving the feed through a fermentative process that results in high nutritional and microbiological quality while minimizing fermentative losses. This challenge is of growing interest to farmers, industry and research and involves the use of additives to improve the fermentation process and preserve the ensiled material. Most studies involved microbial additives; lactic acid bacteria (LAB) have been the focus of much research and have been widely used. Currently, LABs are used in modern and sustainable agriculture because of their considerable potential for enhancing human and animal health. Although the number of studies evaluating LABs in silages has increased, the potential use of these micro-organisms in association with silage has not been adequately studied. Fermentation processes using the same strain produce very different results depending on the unique characteristics of the substrate, so the choice of silage inoculant for different starting substrates is of extreme importance to maximize the nutritional quality of the final product. This review describes the current scenario of the bioprospecting and selection process for choosing the best LAB strain as an inoculant for ensiling. In addition, we analyse developments in the fermentation process and strategies and methods that will assist future studies on the selection of new strains of LAB as a starter culture or inoculant.  相似文献   

14.
Gram-positive bacteria are a nascent platform for synthetic biology and metabolic engineering that can provide new opportunities for the production of biomolecules. However, the lack of standardized methods and genetic parts is a major obstacle towards attaining the acceptance and widespread use of Gram-positive bacterial chassis for industrial bioproduction. In this study, we have engineered a novel mRNA leader sequence containing more than one ribosomal binding site (RBS) which could initiate translation from multiple sites, vastly enhancing the translation efficiency of the Gram-positive industrial strain Bacillus licheniformis. This is the first report elucidating the impact of more than one RBS to initiate translation and enhance protein output in B. licheniformis. We also explored the application of more than one RBS for both intracellular and extracellular protein production in B. licheniformis to demonstrate its efficiency, consistency and potential for biotechnological applications. Moreover, we applied these concepts for use in other industrially relevant Gram-positive bacteria, such as Bacillus subtilis and Corynebacterium glutamicum. In all, a highly efficient and robust broad-host expression element has been designed to strengthen and fine-tune the protein outputs for the use of bioproduction in microbial cell factories.  相似文献   

15.
Viruses commonly evolve distinct mechanisms to perform some of the same functions as cells. In the January 11 issue of Cell, Deo et al. describe the structure of rotavirus nonstructural protein 3 in complex with RNA, which explains how it acts as a functional homolog of cellular poly(A) binding protein to promote translation of the nonpolyadenylated rotavirus mRNAs.  相似文献   

16.
17.
18.
19.
20.
Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones are a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more "conventional" chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号