首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological and biochemical analysis of the newly isolated white rot fungal (WRF-1) strain has ability to secrete laccase in the economical medium consisted of synthetic dyes, groundnut shell (GNS) and cyanobacterial biomass (algal bloom) under submerged shaking condition at pH 5.0 and 30 °C ± 2 °C temperature. WRF-1 strain was found to decolorize synthetic dyes efficiently at pH 5.0 and 30 °C ± 2 °C temperature. The laccase activity of strain was purified to homogeneity by chromatography with yield up to 70%. The molecular mass of laccase was found to be 70 kDa by SDS-PAGE and isoelectric point was 4.8. Biotransformation of the dyes was followed spectrophotometrically and dyes were found to decolorize completely after 6 days of fermentation. LC-MS studies were used to decipher the degradation profile of synthetic dyes by WRF-1. Indigo carmine gets degraded to isatin sulfonic acid and 4-amino-3-methylbenzenesulphonic acid whereas methyl orange degraded metabolites were identified as p-N,N′-dimethylamine phenyldiazine and p-hydroxybenzene sulfonic acid. Thus the study would give a road map for the production and application of laccase enzyme on a larger scale using low cost substrate.  相似文献   

2.
The properties of Trematosphaeria mangrovei laccase enzyme purified on Sephadex G-100 column were investigated. SDS–PAGE of the purified laccase enzyme showed a single band at 48 kDa. The pure laccase reached its maximal activity at temperature 65 °C, pH 4.0 with Km equal 1.4 mM and Vmax equal 184.84 U/mg protein. The substrate specificity of the purified laccase was greatly influenced by the nature and position of the substituted groups in the phenolic ring. The pure laccase was tested with some metal ions and inhibitors, FeSO4 completely inhibited laccase enzyme and also highly affected by (NaN3) at a concentration of 1 mM. Amino acid composition of the pure enzyme was also determined. Carbohydrate content of purified laccase enzyme was 23% of the enzyme sample. The UV absorption spectra of the purified laccase enzyme showed a single peak at 260–280 nm.  相似文献   

3.
This study on the lignocellulases in broth cultures of the basidiomycete Panus tigrinus indicates that laccase and xylanase enzymes are constitutive and cellulase is inducible. In stationary culture at 28°C, the greatest laccase and xylanase activity was observed after growth for approximately nine days. Laccase production was dependent on the presence, and the particular brand, of malt extract in the growth medium. While production of laccase was enhanced by growth at 37°C and 42°C, xylanase was not. Raising the pH of the growth medium from pH 5.6 to pH 7.0 did not affect xylanase production, but laccase production was reduced at the higher pH. In shake culture, growth was pelleted and biomass lower than in stationary culture, and synthesis of both enzymes was strongly inhibited. Cultures of P. tigrinus decolourised Poly R-478 and the toxic triphenyl methane dye, crystal violet. It was also shown to degrade a natural lignocellulosic waste, sawdust.  相似文献   

4.
A thermostable and pH-stable laccase from Klebsiella pneumoniae was cloned and expressed in Escherichia coli. The recombinant laccase (rLac) achieved a specific activity of 7.12 U/mg after purification by Ni-affinity chromatography. Optimal enzyme activity was observed at pH 4.0 and 35 °C for 2,2′-azino-bis (3-ethylbenzthiazoline sulfonic acid) (ABTS) oxidization and pH 8.0 and 70 °C for 2,6-dimethoxyphenol (2,6-DMP) oxidization. Thermostability and pH stability studies showed that the rLac was stable over the range of 30–70 °C and pH 5.0–9.0 using 2,6-DMP as substrate. Circular dichroism analysis suggested that the secondary structure of the rLac mainly consisted of α-helix that played a vital role in maintaining laccase activity and revealed the potential mechanisms for the changes in laccase activity under varying pHs (3.0–11.0) and temperatures (20–90 °C). Finally, the rLac could decolorize the tested dyes with high decolorization efficiency.  相似文献   

5.
To enhance laccase yield, the laccase gene from Bacillus vallismortis fmb-103 was cloned and heterologously expressed in Escherichia coli BL21 (DE3) cells. The auto-induction strategy was applied during fermentation, and the process was controlled, as follows: Cu2+ was added when the optical density at 600 nm (OD600) was 0.3, the fermentation temperature was adjusted to 16 °C when the OD600 was 0.9, and fermentation was stopped after 50 h. The yield of recombinant laccase was up to 3420 U/L, as assayed by 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). Recombinant laccase was purified 4.47-fold by heating for 10 min at 70 °C and dialyzing against 50–60% ammonium sulfate, retained more than 50% activity after 10 h at 70 °C, and demonstrated broad pH stability. Malachite green was efficiently degraded by recombinant laccase, especially in combination with mediators. These results provided a basis for the future application of recombinant laccase to malachite green degradation.  相似文献   

6.
Glycerol has the potential of being a low-cost and extremely versatile building block. However, current transformation strategies such based on noble-metal-catalysts show several disadvantages including catalyst deactivation or negative environmental impacts. In this study glycerol was oxidized by 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) in the presence of laccase from Trametes hirsuta. Analysis of the reaction production indicated sequential oxidation to glyceraldehyde, glyceric acid and tartronic acid, finally resulting in mesoxalic acid. The number and nature of oxidation products was depended on the concentration of TEMPO used. At lower TEMPO concentrations (<6 mM) the major initial reaction product was glyceraldehyde while at higher concentration in addition considerable amounts of glyceric acid were formed. Glycerol oxidation was also shown with laccase immobilised on alumina pellets which increased laccase stability.  相似文献   

7.
The white-rot fungus Phlebia brevispora BAFC 633 produces laccases in large proportions. In this work P. brevispora BAFC 633 was grown on Pinus taeda wood chips in 10-L bioreactors. To select the biopulping experimental conditions, we analyzed the variables affecting enzymatic laccase activity in the culture supernatants, indicating that the suitable incubation temperature was 30 °C in order to promote enzyme stability. Phlebia brevispora BAFC 633 secreted 744 U/g of laccase, selectively removing lignin during biotreatment of wood chips, causing a reduction in Kappa number and 10% weight loss, and creating a more open structure and better access to the pulping liquor, which would require less chemical consumption, thus diminishing the environmental impact of the chemical pulping process.These results support the biotechnological potential of P. brevispora BAFC 633 for biopulping processes and enhance the potential for bioprospecting native isolates of the microflora of our country's natural environment.  相似文献   

8.
Trametes trogii BAFC 463 culture fluids (containing 110 U ml−1 laccase; 0.94 U ml−1 manganese peroxidase), as well as its purified laccase were capable of decolorizing azoic, indigoid, triphenylmethane, anthraquinonic and heterocyclic dyes, in the absence of redox mediators. Six dyes: RBBR, Indigo Carmine, Xylidine, Malachite Green, Gentian Violet and Bromophenol Blue were almost completely degraded (more than 85% decolorization after 1 d) by either laccase or T. trogii itself in culture, proving the role of the enzyme in dye decolorization. The purified laccase also decolorized 65% of Fast Blue RR and 30% of Azure B and Methylene Blue after 24 h. The use of redox mediators significantly increased the decolorization rates (90% decolorization of Azure B after 1 h). 1-hydroxybenzotriazole resulted the best redox mediator, but the natural mediator p-hydroxybenzoic acid also demonstrated its efficiency for dye decolorization. Due to their ability to decolorize recalcitrant dyes without addition of redox mediators, high laccase activities, high thermostability and efficient decolorization at 70 °C and pH 7.0, even in the presence of high concentrations of heavy metals (100 mM Cu+2, Pb+2 or Cd+2) or in a synthetic dyebath, T. trogii culture fluids could be effectively used to decolorize synthetic dyes from effluents.  相似文献   

9.
《Process Biochemistry》2014,49(7):1196-1204
Laccase from a tree legume, Leucaena leucocephala, was purified to homogeneity using a quick two-step procedure: alginate bead entrapment and celite adsorption chromatography. Laccase was purified 110.6-fold with an overall recovery of 51.0% and a specific activity of 58.5 units/mg. The purified laccase was found to be a heterodimer (∼220 kDa), containing two subunits of 100 and 120 kDa. The affinity of laccase was found to be highest for catechol and lowest for hydroquinone, however, highest Kcat and Kcat/Km were obtained for hydroquinone. Purified laccase exhibited pH and temperature optima of 7.0 and 80 °C, respectively. Mn2+, Cd2+, Fe2+, Cu2+ and Na+ activated laccase while Ca2+ treatment increased laccase activity up to 3 mM, beyond which it inhibited laccase. Co2+, Hg2+, DTT, SDS and EDTA showed an inhibition of laccase activity. The Leucaena laccase was found to be fairly tolerant to organic solvents; upon exposure for 1 h individually to 50% (v/v) each of ethanol, DMF, DMSO and benzene, more than 50% of the activity was retained, while in the presence of 50% (v/v) each of methanol, isopropanol and chloroform, a 40% residual activity was observed. The purified laccase efficiently decolorized synthetic dyes such as indigocarmine and congo red in the absence of any redox mediator.  相似文献   

10.
The decolourization and detoxification of the triarylmethane dye Malachite green (MG) by laccase from Trametes sp. were investigated. The laccase decolorized efficiently the dye down to 97% of 50 mg L?1 initial concentration of MG when only 0.1 U mL?1 of laccase was used in the reaction mixture. The effects of different physicochemical parameters were tested and optimal decolourization rates occurred at pH 6 and at temperatures between 50 and 60 °C. Decolourization of MG occurred in the presence of metal ions which could be found in textile industry effluent. 1-hydroxybenzotriazole (HBT) affected positively the decolourization of MG. The presence of some phenolic compounds namely ferulic, coumaric, gallic, and tannic acids was found to be inhibiting for the decolourization at a concentration of 10 mM.The effect of laccase inhibitors in the decolourization of MG was tested with l-cysteine, and ethylene diamine tetra-acetic acid (EDTA) at concentrations of 0.1, 1 and 10 mM. It was demonstrated that l-cysteine and EDTA inhibited the decolourization starting from 1 mM concentration. However, for NaCl a concentration of 100 mM was needed for the inhibition of laccase. The decolourization of MG resulted in the removal of its toxicity against Phanerochaete chrysosporium.The stability of the laccase toward temperature and HBT free radicals was also assessed during MG decolourization. It was shown that laccase was stable at 50 °C but in the presence of the laccase mediator HBT, the stability of the enzyme was severely affected resulting in a loss of 50% of the activity after 3 h incubation.  相似文献   

11.
A laccase was purified from Trametes hirsuta. This laccase was classified as a “white” or “yellow” laccase. pH 2.4 was optimal for the oxidation of ABTS and pH 2.5 for DMP. DMP oxidation was optimal at 85°C. The half-life of this laccase was 70 min at 75°C, and 5 h at 65°C. Non-phenolic dyes, such as Methyl Red, were oxidized by purified laccase without mediators. The enzyme was not inhibited by Cu2+, Mn2+, or EDTA. These are atypical laccase characteristics that make it a good candidate for theoretical and applied research.  相似文献   

12.
Selenate reductase (SER) from Thauera selenatis is a member of a distinct class of the TAT-translocated type II molybdoenzymes and is closely related to a group of thermostable nitrate reductases (pNAR) found in hyperthermophilic archaea. In the present study the thermostable and thermo-active properties of SER, isolated with either molybdenum (Mo) or tungsten (W) at the active site, are reported. Results show that the purified Mo–SER complex is stable and active upon heat-shock incubation for 10 min at temperatures up to 60 °C. At temperatures greater than 65 °C all three subunits (SerABC) are readily denatured. The optimum temperature for maximum activity recorded was also determined to be 65 °C. T. selenatis can grow readily on a tungstate rich medium up to concentrations of 1 mM. SER isolated from periplasmic fractions from cells grown on 1 mM tungstate displayed selenate reductase activities with a 20-fold reduction in Vmax (0.01 μmol [S]/min/mg) and a 23-fold increase in substrate binding affinity (Km 0.7 μM). The thermo-stability and pH dependence of W–SER was shown to be similar to that observed for Mo–SER. By contrast, the optimum reaction temperature for W–SER exceeded the maximum temperature tested (>80 °C). The combined data from the kinetic analysis and thermal activity profiles provide evidence that W can substitute for Mo at the active site of SER and retain detectable selenate reductase activity. It is argued that despite the similarity in their catalytic and electron conducting subunits, the presence of a membrane anchor in the archaeal pNAR system appears pivotal to the enhanced hyperthermostability. The fact that Mo–SER is thermostable up to 65 °C however, could be advantageous when designing selenate contamination remediation strategies.  相似文献   

13.
Degradation of chlorophenols catalyzed by laccase   总被引:1,自引:0,他引:1  
The degradations of 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 2-chlorophenol (2-CP) catalyzed by laccase were carried out. The optimal condition regarding degradation efficiency was also discussed, which included reaction time, pH value, temperature, concentration series of chlorophenols and laccase. Results showed that the capability of laccase was the best, while to oxidize 2,4-DCP among the above-mentioned chlorophenols. Within 10 h, the removal efficiency of 2,4-DCP, 2-CP and 4-CP could reach 94%, 75% and 69%, respectively. The optimal pH for laccase to degrade chlorophenols was around 5.5. The increase of laccase concentration or temperature might result in the degradation promotion. The trends of degradation percentage were various among these three chlorophenols with the concentration increase of chlorophenols. Degradation of 2,4-DCP is a first-order reaction and the reaction activation energy is about 44.8 kJ mol−1. When laccase was immobilized on chitosan, crosslinked with glutaraldehyde, the activity of immobilized laccase was lower than that of free laccase, but the stability improved significantly. The removal efficiency of immobilized laccase to 2,4-DCP still remained over 65% after six cycles of operation.  相似文献   

14.
《Process Biochemistry》2014,49(7):1097-1106
A novel laccase was isolated and characterized from a new selective lignin-degrading white-rot fungus Echinodontium taxodii 2538, in which a high yield of laccase was obtained. No laccase isoenzyme was detected in the synthetic liquid media. The purified laccase (designated as EtL2538) had an apparent molecular mass of 56 kDa, pI value of 3.1, and N-terminal amino acid sequence of GIGPVTDLHIVNAAV. EtL2538 showed optimum pH at 3.0 and optimum temperature at 60 °C using ABTS as the substrate. EtL2538 revealed superior thermostability, and retained over 80% of its original activity after incubation for 2 h at 50 °C. The laccase gene, etl2538, was also cloned and sequenced. This gene encoded a mature laccase protein containing 499 amino acids (aa) preceded by a signal peptide of 21 aa, and the deduced protein sequence contained four copper-binding conserved domains of typical laccase protein. EtL2538 was further used in lignin oxidation and dye decolorization. Even without the existence of redox mediators, EtL2538 could cleave the methoxyl groups and β-O-4 ether linkages in lignin from bamboo, and significantly decolorize malachite green and RBBR. These novel properties of EtL2538 may render it as a potential biocatalyst for biotechnological and environmental applications.  相似文献   

15.
Laccases (benzenediol oxygen oxidoreductases, EC 1.10.3.2) are used in many biotechnological processes, including removal of polyphenols in beverages, decolorizing and detoxifying effluents, drug analysis and bioremediation. In the present work, we have tried to increase thermal stability of laccase from Bacillus HR03 using site directed point mutations. Glu188 was substituted with 2 positive (Lys and Arg) and one hydrophobic (Ala) residues. All mutations showed improved thermal stability. Thermal activation of laccase was also increased after introducing the mutations. Remarkably, the Glu188Lys variant showed 3-fold higher thermal activation and higher T50 (5 °C) with respect to the native enzyme. Furthermore steady-state kcat and Km values were influenced despite the distance between the mutated position and the catalytic site. In Glu188Arg mutation, the kcat was improved 3-fold and Km reduced by 25%. Interestingly, all three variants showed higher stability against urea as a chemical denaturant. Structural analyses of the native and mutated variants were carried out using fluorescence and far-UV circular dichroism.  相似文献   

16.
《Process Biochemistry》2014,49(8):1266-1273
Biological processes for the degradation of intractable materials are still not considered to be practical due to the slow rates of enzymatic degradation. Cellulosomes are complexed enzyme systems with great degradative potential and one of the strategies for overcoming this problem. In this study, the laccase CueO from Escherichia coli was fused to the dockerin domain of a cellulosome system and further assembled with the scaffoldin miniCbpA, forming a laccase–miniCbpA complex. Compared to the individual subunits, laccase–miniCbpA complex caused a noticeable 2.1-fold increase in enzyme activity levels and enhanced degradation of various synthetic dyes, showing an increase of approximately 1.6-fold. Also, pretreated barley straw by laccase complexes was efficiently converted to bioethanol using a cellulase producing Saccharomyces cerevisiae strain. The laccase complexes caused a 2.6-fold increase in the amount of reduced sugar with an insoluble substrate in conditions with an identical amount of enzymes. The cellulolytic yeast with the aid of laccase complexes produced 2.34 g/L ethanol after 72 h, indicating an increase of approximately 2.1-fold compared to fermentation without the laccase complexes. This demonstrates the feasibility of developing an efficient laccase complex based on the cellulosome and this strategy may be used to degrade recalcitrant materials.  相似文献   

17.
Laccase is a widespread group of multi-copper enzymes which can catalyze the oxidation of a variety of organic compounds, with concomitant reduction of molecular oxygen to water. It has a wide application in industrial processes, particularly in renewable bio-energy industry. In this study, Pleurotus ostreatus strain 10969 with high yield of laccase, previously isolated from edible fungus growing on Juncao, was applied for optimization of fermentation media and growth parameters for the maximal enzyme production through response surface methodology and further characterization of the laccase activity. The results show that glucose and Mg2+ are the key ingredients for laccase production with the optimum concentration of 0.0988 g/mL and 7.3 mmol/L respectively. Compared to the initial medium, the highest laccase yield observed is approximately increased by 2.5 times under the optimized conditions. Extracellular laccase was then purified and its characters were analyzed. The molecular weight of the laccase is about 40 kDa, and the optimum pH and temperature for its activity is 4.0 and 50 °C with the corresponding Km and Vmax of 0.31 mmol/L and 303.25 mmol/min respectively. DTT, β-mercaptoethanol and NaN3 nearly inhibit all activity of the laccase, as well as the metal ions especially Ag+. In summary, our results will facilitate the utilization of plant lignin in biomass energy industry.  相似文献   

18.
Blue multicopper oxidases, laccases displayed on the surface of Bacillus spores were used to decolorize a widely used textile dyestuff, indigo carmine. The laccase-encoding gene of Bacillus subtilis, cotA, was cloned and expressed in B. subtilis DB104, and the expressed enzyme was spontaneously localized on Bacillus spores. B. subtilis spores expressing laccase exhibited maximal activity for the oxidation of 2,2′-azino-bis (3-ethylthiazoline-6-sulfonate) (ABTS) at pH 4.0 and 80 °C, and for the decolorization of indigo carmine at pH 8.0 and 60 °C. The displayed enzyme retained 80% of its original activity after pre-treatment with organic solvents such as 50% acetonitrile and n-hexane for 2 h at 37 °C. The apparent Km of the enzyme displayed on spores was 443 ± 124 μM for ABTS with a Vmax of 150 ± 16 U/mg spores. Notably, 1 mg of spores displaying B. subtilis laccase (3.4 × 102 U for ABTS as a substrate) decolorized 44.6 μg indigo carmine in 2 h. The spore reactor (0.5 g of spores corresponding to 1.7 × 105 U in 50 mL) in a consecutive batch recycling mode decolorized 223 mg indigo carmine/L to completion within 42 h at pH 8.0 and 60 °C. These results suggest that laccase displayed on B. subtilis spores can serve as a powerful environmental tool for the treatment of textile dye effluent.  相似文献   

19.
Nine different polysaccharides were screened for conjugation with laccase and evaluated for pH and thermal stability. All the polysaccharides decreased the thermal and pH stability of laccase at 50 °C and 60 °C, where conjugation with gum Arabic showing the most pronounced effect. Thermal instability of gum Arabic conjugated laccase was affirmed by differential scanning calorimeter while the structural changes in the conjugated laccase responsible for thermal instability was analysed by fluorescence spectrophotometer. The gum Arabic conjugated laccase showed an unusually high tolerance to sodium chloride, thermal instability and lower stability in alkaline conditions. Gum Arabic conjugated laccase was found to decolorize Remazol brilliant blue R in the textile effluent at a slower rate without any microbial growth which was unlike that observed in effluent treated with free laccase. Further, effluent treated with conjugated laccase enabled its reuse as liquor for the dyeing to get desired shade.  相似文献   

20.
An attempt was made to use cyanobacterial biomass of water bloom, groundnut shell (GNS) and dye effluent as culture medium for laccase enzyme production by Coriolus versicolor. Laccase production was found to be 10.15 ± 2.21 U/ml in the medium containing groundnut shell and cyanobacterial bloom in a ratio of 9:1 (dry weight basis) in submerged fermentation at initial pH 5.0 and 28 ± 2 °C temperature. Half life of enzyme was found to be 74 min at 60 °C. Kinetic analysis of laccase when made with substrate ABTS, Km and Vmax were found to be 0.29 mM and 9.49 μmol/min respectively. Azide and hydroxylamine were found to exert significant inhibition on thermostable laccase. Inhibitor constant (ki) for azide and hydroxylamine were 1.33 and 0.18 mM respectively. This study forms the first report on the potential application of waste water cyanobacterial bloom and dyeing effluent as a medium for laccase production by C. versicolor MTCC138.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号