首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The platinum electrode potentials relative to the standard half cell depended on a pH value, dissolved oxygen concentration, equilibrium constant and oxidation reduction potentials of the liquid The overall potential change in submerged fermentation gave no independent information on these individual factors A thermostatic and pH-static apparatus excluded influences of temperatures and pH values on the electrode pontentials If the determination was completed for short time duration, potentials were governed by the dissolved oxygen tension. While the oxygen concentration was maintained at a same level, redox potential changes became a dominant. This measurement of redox potential, which gave the concentration of extremely low dissolved oxygen that could not be detected by the membrane-coated oxygen electrode, was practically useful for the control of aerobic fermentation  相似文献   

2.
Cytochrome c oxidase is the terminal enzyme in mammalian respiration, and one of its main functions is to catalyze the reduction of oxygen under physiological conditions. Direct reduction of oxygen at electrodes requires application of substantial overpotentials. In this work, bovine cytochrome c oxidase has been immobilized in electrode-supported lipid bilayer membranes to investigate the electroreduction of oxygen under flow conditions. The effect that temperature, solution pH, and solution composition have on the reduction of oxygen by this novel enzyme-modified electrode is reported. Results indicate that the electroreduction of oxygen is most pronounced at low pH (6.4) and elevated temperature (38 degrees). At an applied potential of -350 mV vs. Ag/AgCl (1M KCl), a current density of ca. 7 microA/cm2 was obtained. The current responses obtained at these electrodes are stable over a period of ca. 10-14 days (10-15% decrease in response). The cytochrome c oxidase-modified electrodes described here could potentially be used for the direct electroreduction of oxygen to water in a biofuel cell.  相似文献   

3.
The construction and operation of a cell for temperature-controlled, direct electrochemical studies of oxygen-sensitive materials are described. The borosilicate cell contains a pyrolytic graphite working electrode, a Ag/AgCl reference electrode, and a platinum counter electrode, all of which can be readily interchanged with other types of electrodes. It is surrounded by a water jacket constructed of steel and Lexan, which can easily maintain temperatures between 4 degrees C and at least 90 degrees C. The entire cell was designed to minimize the number, complexity, and expense of components, as well as minimize required sample volume (250 microliters) and sources of oxygen leakage. As examples of the cell's utility, the redox properties of two common organic redox dyes, methyl viologen and thionin, were determined by differential pulse voltammetry at temperatures from 30 to 90 degrees C.  相似文献   

4.
A one-compartment glucose/O(2) biofuel cell based on an electrostatic layer-by-layer (LbL) technique on three-dimensional ordered macroporous (3DOM) gold electrode was described. A 3DOM gold electrode was synthesized electrochemically by an inverted colloidal crystal template technique. Then the macroporous gold electrodes were functionalized with Au nanoparticles (AuNPs) and enzyme, glucose dehydrogenase (GDH) or laccase. The (AuNPs/GDH)(n) multilayer modified macroporous gold electrode showed excellent bioelectrocatalytic activity towards glucose. The direct electroreduction towards oxygen was realized at (AuNPs/laccase)(n) films on 3DOM gold electrodes. The maximum power density of the cell with the macroporous film as matrix was 178muWcm(-2) at 226mV, which was 16 times larger than that of the biofuel cell with the flat electrode under the same condition. The proposed method is simple and would be applicable to enhance the power output of miniaturized biofuel cell.  相似文献   

5.
A biofuel cell anode has been made from a modified graphite electrode and immobilized d-glucose dehydrogenase [β-d-glucose:NAD(P)+ 1-oxidoreductase, EC 1.1.1.4 7] so that energy could be drawn from the conversion of d-glucose to d-gluconic acid. An equivalent amount of dihydronicotinamide adenine dinucleotide (NADH) was formed from NAD+ and reduced the surface groups of the modified electrode. Reoxidationn of the latter produced the electrons necessary for a power output from the cell. Electrode modification was made by adsorption of N,N-dimethyl-7-amino 1,2-benzophenoxazinium onto the graphite. A current density of 0.2 mA cm?2 at a cell voltage of ~0.8 V was obtained for more than 8 h with a simulated oxygen cathode. The internal resistance in the cell, in particular in the separator, appeared to be the main current-limiting factor.  相似文献   

6.
The oxygen evolution of single cells was investigated using a nano-probe with an ultra-micro electrode (UME) in a submicron sized system in combination with a micro-fluidic system. A single cell was immobilized in the micro-fluidic system and a nano-probe was inserted into the cytosolic space of the single cell. Then, the UME was used for an in vivo amperometric experiment at a fixed potential and electrochemical impedance spectroscopy to detect oxygen evolution of the single cell under various light intensities.  相似文献   

7.
Two different types of biochemical oxygen demand (BOD) sensors using microbial electrodes were prepared. First, a microbial electrode using the bacteria–collagen membrane and oxygen electrode was used for the determination of BOD. When the electrode was inserted in a sample solution containing glucose and glutamic acid (model waste water), the current of the electrode decreased markedly with time until a steady state was reached. A linear relationship was observed between the steady state current and the concentration of the standard solution containing glucose–glutamic acid or the BOD of the solution. The BOD of industrial waste waters can be estimated within 15 min by using the microbial electrode. No decrease in current output was observed over a ten day period. The reproducibility was determined using the same sample (10% of the standard solution) and was found to be 26.2 ± 2.0 μA (7.5% of the relative standard deviation). Next, a biofuel cell utilizing microbial electrode (immobilized Clostridium butyricum–platinum electrode) was applied to the estimation of the BOD of waste waters. The current of the biofuel cell was decreased markedly with time until a steady state was reached. The steady state current was in all cases attained within 30–40 min at 37°C. A linear relationship was obtained between the steady state current and BOD. The BOD of industrial waste waters can be estimated by using the biofuel cell. Relative error of the BOD estimation was within ±10%. The current output of the biofuel cell was almost constant for 30 days.  相似文献   

8.
Functionalizing nanostructured carbon nanofibers (CNFs) with bimetallic phosphides enables the material to become an active electrode for multifunctional applications. A facile electrospinning technique is utilized for the first time to develop NiCoP nanoparticles encapsulated CNFs that are used as an energy storage system of supercapattery, and as an electrocatalyst for oxygen reduction, oxygen evolution, and hydrogen evolution reaction in KOH electrolyte. Evolving from the inclusion of bimetallic phosphide nanoparticles, the NiCoP/CNF electrode unveils superior‐specific capacitance (333 Fg?1 at 2 Ag?1) and rate capability (87%). The fabricated supercapattery device offers a voltage of 1.6 V that supplies a remarkable energy density (36 Wh kg?1) along with an improved power density (4000 W kg?1) and unwavering cyclic stability (25 000 cycles). Meanwhile, the NiCoP/CNF electrode has simultaneously performed well as a multifunctional electrocatalyst for oxygen reduction reaction at a half‐wave potential of 0.82 V versus reversible hydrogen electrode and can attain a current density of 10 mA cm?2 at a very low overpotential of 268 and 130 mV for the oxygen evolution reaction and hydrogen evolution reaction, respectively. Thus, the NiCoP/CNF with all its inimitable electrode properties has profoundly proved its proficiency at handling multifunctional challenges in terms of both storage and conversion.  相似文献   

9.
A steam sterilizable oxygen electrode for fermentor use is described. The electrode has a silver cathode, lead anode, phosphate electrolyte, and a membrane of a fluorinated ethylene-propylene copolymer film (FEP.). The electrode has a linear response to partial pressure of oxygen from 1.5 × 10?2 to 103 mm Hg.  相似文献   

10.
Recent research has found important differences in oxygen tension in proximity to certain mammalian cells when grown in culture. Oxygen has a low diffusion rate through cell culture media, thus, as a result of normal respiration, a decrease in oxygen tension develops close to the cells. Therefore, for the purpose of standardization and optimization, it is important to monitor pericellular oxygen tension and cell oxygen consumption. Here, we describe an integrated oxygen microsensor and recording system that allows measurement of oxygen concentration profiles in vertical transects through a 1.6-mm deep, stagnant, medium layer covering a cell culture. The measurement set-up reveals that, when confluent, a conventional culture of adherent cells, although exposed to the constant oxygen tension of ambient air, may experience pericellular oxygen tensions below the level required to sustain full oxidative metabolism. Depletions reported are even more prominent and potentially aggravating when the cell culture is incubated at reduced oxygen tensions (down to around 4% oxygen). Our results demonstrate that, if the pericellular oxygen tension is not measured, it is impossible to relate in vitro culture results (for example, gene expression to the oxygen tension experienced by the cell), as this concentration may deviate very substantially from the oxygen concentration recorded in the gas phase.  相似文献   

11.
A new method for real-time monitoring of the oxygen uptake rate (OUR) in bioreactors, based on dissolved oxygen (DO) measurement at two points, has been developed and tested extensively. The method has several distinct advantages over known techniques.It enables the continuous and undisturbed monitoring of OUR, which is conventionally impossible without gas analyzers. The technique does not require knowledge of k(L)a. It provides smooth, robust, and reliable signal. The monitoring scheme is applicable to both microbial and mammalian cell bioprocesses of laboratory or industrial scale. The method was successfully used in the cultivation of NSO-derived murine myeloma cell line producing monoclonal antibody. It was found that while the OUR increased with the cell density, the specific OUR decreased to approximately one-half at cell concentrations of 16 x 10(6) cells/mL, indicating gradual reduction of cell respiration activity. Apart from the laboratory scale cultivation, the method was applied to industrial scale perfusion culture, as well as to processes using other cell lines. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
An apparatus which rapidly provides and maintains constant oxygen partial pressure from 1 to 150 Torr (1.4 to 211 μm) in suspensions of respiring rat hepatocytes (0.50 – 0.87 μm s?1) was developed. Voltage output from a Clark-type electrode in an incubation vessel regulates oxygen flow into the vessel to control solution oxygen concentration at a predetermined level. After maintenance of cell suspensions (4–15 ml) for 10 to 30 min, metabolism can be quenched and examined.  相似文献   

13.
Reactive oxygen species (ROS) are known mediators of intracellular signal cascades. Excessive production of ROS may lead to oxidative stress, loss of cell function, and cell death by apoptosis or necrosis. Lipid hydroperoxides are one type of ROS whose biological function has not yet been clarified. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide in mammalian cells. This contrasts with most antioxidant enzymes, which cannot reduce intracellular phospholipid hydroperoxides directly. In this review, we focus on the structure and biological functions of PHGPx in mammalian cells. Recently, molecular techniques have allowed overexpression of PHGPx in mammalian cell lines, from which it has become clear that lipid hydroperoxides also have an important function as activators of lipoxygenase and cyclooxygenase, participate in inflammation, and act as signal molecules for apoptotic cell death and receptor-mediated signal transduction at the cellular level.  相似文献   

14.
A thin-layer sample cell for examination of the spectra of hemoglobin at various degrees of gaseous-ligand saturation has been constructed to fit into a Cary 17 spectrophotometer. Small sample volumes of 50 μl are used. Equilibration times of only a few minutes are required between taking spectra at different degrees of saturation. Apparatus stability is high as revealed by reproducibility and isosbestic point behavior. Incorporation of an oxygen electrode enables simultaneous measurement of oxygen partial pressure for intermediate spectra.  相似文献   

15.
A membrane-diffusion cell for oxygen uptake measurements in an open system is described. Polarographic oxygen measurements with a Clark electrode are combined with simultaneous pH and absorbance or fluorescence determinations. Examples of its use are given and discussed, including experiments on mitochondrial respiration. Advantages of this cell are analyzed and comparisons are made with other open-system respirographs.  相似文献   

16.
Batteries based on the cell reaction between alkali metals and oxygen are highly attractive for energy storage due to their superior theoretical energy density. However, despite continuous progress, fundamental challenges in the further development of these cell systems remain. Understanding the oxygen electrode reaction and improving cycle life, while at the same time maximizing the practical energy density, are some of the most important issues that need to be addressed. Here, the product formation in aprotic sodium‐oxygen cells is studied and it is shown how cycle life and practical capacities can be improved. Different cell reactions (leading to either NaO2 or Na2O2 as discharge products) have recently been reported. To understand whether the carbon structure or the local current density has any influence on the product stoichiometry or the cell performance, several carbon materials with a broad range in properties are tested. Phase‐pure NaO2 is always found as a discharge product, but capacities range from 300 to values as high as 4000 mAh g(C)?1 depending on the type of carbon. More importantly, the cycle life of Na/O2 cells can be largely improved by shallow cycling, steadily yielding capacities of 1666 mAh g(C)?1 for at least 60 cycles using a Ketjen black carbon electrode.  相似文献   

17.
18.
Lee SW  Ko YG  Bang S  Kim KS  Kim S 《Molecular microbiology》2000,35(6):1540-1549
FADD is a mammalian pro-apoptotic mediator consisting of the N-terminal death effector domain (DED) and the C-terminal death domain (DD). The N-terminal 88-residue fragment of murine FADD was defined as the stable structural unit of DED, as determined by proteolytic digestion and conformational analysis. This domain induced bacterial as well as mammalian cell death, whereas the full-length or DD of FADD did not. The Escherichia coli cells expressing FADD-DED showed elongated cell morphology and an increased level of nicked chromosomal DNA and mutation. The lethality of FADD-DED was abolished by co-expression of thioredoxin and superoxide dismutase or relieved by the addition of vitamin E as a reducing agent and under anaerobic growth conditions. The toxicity of FADD-DED was genetically suppressed by various oxidoreductases of E. coli. All these results suggest that the death effector domain of mammalian FADD induced bacterial cell death by enhancing cellular levels of reactive oxygen species (ROS).  相似文献   

19.
During acid mine drainage, Acidithiobacillus ferrooxidans, a nonpathogenic, acidophilic,lithotrophic bacterium, utilizes rusticyanin to transfer electrons for the oxidation of Fe 2+ toFe3+ for deriving its energy. No other function of rusticyanin is known. We demonstrate thatpurified rusticyanin enters mammalian cells inducing either inhibition of cell cycleprogression or caspase-8 mediated apoptosis. Treatment of human melanoma cells withrusticyanin allowed significant generation of reactive oxygen species and active caspase -8,leading to cell death. The ability of rusticyanin to modulate mammalian cell death might berelevant to a role of this cupredoxin in protecting At.ferrooxidans from eukaryotic predatorsin the environment.  相似文献   

20.

Aims

Metarhizin A was originally isolated from Metarhizium flavoviride as a potent inhibitor of the growth of insect and mammalian cells. In this study, we aimed to understand the molecular targets of metarhizin A involved in its anti-proliferative activity against human cells.

Main methods

Cell cycle regulators and signaling molecules were examined by immunoblotting using specific antibodies. A mitochondria-enriched fraction was prepared from mouse liver, and mitochondrial activity was monitored using an oxygen electrode. Enzyme activity was measured using purified cytochrome c oxidase and permeabilized cells.

Key findings

Metarhizin A inhibits the growth of MCF-7 cells with an IC50 value of ~ 0.2 μM and other cells in a similar manner; a cell cycle-dependent kinase inhibitor, p21, is selectively induced. Significant amounts of reactive oxygen species (ROS) are generated and ERK1/2 is activated in cells treated with metarhizin A. Metarhizin A completely suppresses oxygen consumption by mitochondria, and potently inhibits the activity of cytochrome c oxidase. It induces cell death when MCF-7 cells are cultured under limiting conditions.

Significance

Metarhizin A is a potent inhibitor of cytochrome c oxidase and activates the MAPK pathway through the generation of ROS, which induces growth arrest of cells, and, under some conditions, enhances cell death. The cytochrome c oxidase system is a possible molecular target of metarhizin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号